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 Abstract:  
The application of artificial intelligence (AI) methods to grid analysis has been extensively studied. The 
distribution characteristics of the power flow dataset required for the training of AI methods will affect 
the performance of AI models. The power flow data accumulated for offline analysis are manually 
adjusted limit operation mode and distributed at the grid operation boundary, so the power flow 
dataset for offline analysis has good distribution characteristics. However, its small number and low 
manual generation efficiency make it difficult to exploit the advantages of this distributed characteristic 
dataset. In this paper, a power flow dataset sample supplementation method based on Wasserstein-
gradient flow is proposed to realize the adjustment of the power flow dataset considering the 
distribution characteristics by solving the dynamic process of the dataset for Wasserstein-gradient 
flow. It is also tested on the CEPRI-36 node grid power flow dataset, and the generated supplemental 
data all have similar distribution characteristics with the target dataset, which verifies the effectiveness 
of the method.     
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1. Introduction   

AI methods applied to power grid analysis require training of power flow datasets. The existing sources of power 

flow data are mainly generated by offline simulation and online data collection, but both the online and offline 

power flow datasets accumulated in the past cannot directly meet the requirements. The power flow data for 

online analysis is the actual operation mode collected, which constitutes a large amount of sample data, but the 

distribution is not uniform and there are many similar samples, which cannot meet the requirements of covering 

comprehensively and clear boundary; the power flow data for offline analysis is the extreme operation mode 

manually adjusted, which constitutes a strong sample typicality and is distributed at the stable boundary of the 

grid operation, which helps to achieve the requirement of clear boundary, but the data volume is small and it is 

difficult to cover all the typical working conditions of the grid operation, which cannot meet the requirement of 

covering comprehensively. If the dataset is supplemented by targeting the distribution characteristics of the data 

for offline analysis, the obtained dataset will satisfy the two requirements mentioned above. Since the research 

on data set adjustment methods considering distribution characteristics is relatively weak, it is difficult to take 

full advantage of the distribution characteristics of the data for offline analysis.  
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Optimal transport theory is the study of the relationship between distributions and distributions. Gradient flow 

based on optimal transport theory is an important tool in applied mathematics for constructing dynamic models 

in feature spaces [1], gradient flow has been extensively studied in the context of metric spaces [2] and has been 

found to be deeply related to partial differential equations (PDEs)  

In view of this, we study a power flow dataset supplementation method considering the distribution 

characteristics, which transforms the power flow dataset data into Wasserstein space in the form of distribution, 

then transforms the power flow dataset adjustment problem into the problem of solving the extreme value of the 

energy functional by constructing the functional, then solves the curve evolution equation by using the variational 

method, and finally solves the evolution equation to obtain a set of power flow dataset series labeled by process 

time. This paper is organized as follows: Section 2 presents the relevant technical background, including optimal 

transmission theory and gradient flow; Section 3 introduces the Wasserstein-gradient flow based power flow 

dataset supplementation method. Section 4 verifies the effectiveness of the method by testing it in the power flow 

dataset of the CEPRI 36 node power grid model.  

2. Technical Background  

2.1. Optimal Transport and the Optimal Transport Dataset Distance  

Optimal transport theory is the study of the problem of interconversion between distributions, where the optimal 

transport distance (also known as the Wasserstein distance) is a quantitative tool to describe the degree of variation 

between distributions. For two subsets of measures

 and the transport cost function  

Where and are features from the samples in the two measures, 

and  is the set of transport schemes between  and , i.e., the 

coupling with these two measures as marginal measures:  

Where for p ≥ 1, is called the p-Wasserstein distance. As the name suggests,  defines a true distance on  [4]. Thus, 

with the former as the distance configuration is the metric space , called the (p-)Wasserstein space. In practice, 

the solution method is often solved by a regularized version of Eq. (1) with an additional entropy term  

 [5].  

 

 
                               (5)  

In the  literature [6] it was demonstrated that there is also a dynamic formula for OT:   

                                          (4)   

where   minimum  from  taken  is  the  the  measure - domain  pair  satisfying    and  the  

continuity equation:   

, the optimal transport problem is   
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This formulation corresponds to finding the shortest path satisfying the conservation of the mass constraint in the 

metric path  from  to  and the velocity field  , even if the path length is the smallest (formally the integral of 

the metric derivative). Thus, in contrast to the global correspondence  

(via ) in the static formulation (Eq. (1)), the dynamic formulation focuses on the local transport (via  

).  

It is appealing to use OT to define a distance between datasets, but this is non-trivial for labeled datasets. The 

main issue is that problem (1) would require an elementwise metric  , which for labeled datasets means defining 

a distance between pairs of feature-label pairs. For the general case where  might be a discrete set (i.e., 

classification), this seems daunting. In recent work, researchers [7] propose a hybrid metric on this joint space that 

relies on representing the labels  as distributions over features  . E.g., for a digit classification dataset,  would 

be a distribution over images with label .  

With this, they define a metric on  as . Using  as the ground cost in eq. (1) yields a distance between measures on 

, and therefore between datasets, which they refer to as the Optimal Transport Dataset Distance (OTDD):  

 .            (6) 

The main appeal of this distance is that it is defined even if the label sets of the two data sets are nonoverlapping, 

or if there is no explicit known correspondence between them (e.g., digits to letters). It achieves this through a 

purely geometric treatment of features and labels. Another advantage is its computational scalability, which relies 

on using a Gaussian approximation on the per-label distributions, i.e., modeling each  as , whose mean and 

covariance are estimated from samples. In that case, the distances  can be computed in closed form, so no 

optimization is needed to evaluate  inside problem (6).  

2.2. Grandient Flows  

Consider a functional  and a point . A gradient flow is an absolutely continuous curve  that evolves from  in 

the direction of steepest descent of . When  is Hilbertian and  is sufficiently smooth, its gradient flow can be 

succinctly expressed as the solution of a differential equation  with initial condition . Different discretizations of 

this equation yield popular gradient descent schemes, such as momentum and acceleration [8]   

3. Wasserstein-Gradient Flow Based Sample Replenishment Method for Power Flow Datasets  

The power flow dataset data are transformed into Wasserstein space, and then the power flow dataset adjustment 

problem is transformed into the problem of solving the extreme value of the energy generalization function by 

constructing the energy generalization function, and then the curve evolution equation is obtained by using the 

variational method, and finally the evolution equation is solved to obtain a set of power flow dataset series labeled 

by process time. The distribution difference between this serial dataset and the target distribution dataset gradually 

decreases with the increment of the time principal scale, and finally an adjusted dataset with controllable 

distribution difference is obtained.  

The main problem that needs to be solved for a specific implementation is how to choose the objective functional.  

3.1. Functional Minimization via Gradient Flows  

Given a dataset objective expressed as a functional  , we seek a joint measure  realizing:  

                                (7)  
  :   
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We propose to approach this problem via gradient flows, i.e., by moving along a curve of steepest descent starting 

at  until reaching a solution . Unlike Euclidean settings, here the underlying space  is infinite-dimensional and 

non-Hilbertian, thus requiring stronger tools.  

First, the notion of derivative can be extended to functionals on measures through the first variation,  

 
which can also be seen as a continuity equation (4) for the measure  and the velocity field  

 .  

Our main functional of interest will be the Wasserstein distance to a target distribution:  

 , which we realize using the OTDD (Section 2.1).   

Hence, we assume the objective of interest can be cast as:  

  
The numerical solution of the functional can be found in the literature [9].  

4. Experimental Validation  

4.1. Example Introduction  

The samples in the power flow dataset of this paper describe various modes of operation of the grid model 

CEPRI36, and the grid structure is shown in Figure 1, where some nodes are connected to capacitors or reactors 

that are not involved in regulation, and there are 18 nodes of generating units or loads involved in regulation, with 

the nodes injecting power as the input feature values, for a total of 36 variables, i.e., the sample contains a feature 

dimension of 36 dimensions.  

  
Figure 1: CEPRI36 grid model topology connection diagram  

For sample supplementation of the target distribution dataset using a Wasserstein gradient flow method. Among 

them, the target distribution dataset uses 5000 manually generated samples with distribution characteristics 

similar to those of the power flow dataset for offline analysis, whose samples are mainly distributed near the 

stability boundary. The initial dataset for the sample adjustment generation process is chosen from the randomly 

generated dataset.  

denoted by  .  With this,  we characterize the gradient flow    of    as the solution of:   

                                          (8)   
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For this purpose, the experimental design is as follows 

The original random dataset is denoted as , the target distribution dataset is denoted as  , and then four randomly 

generated data sets are denoted as , where i=1,2,3,4.  

(1) Using the four data sets  as the initial data set and  as the target data set, a gradient flow operation is 

performed to select the appropriate four data sets according to OTDD, denoted as  , where i=1,2,3,4, and there 

is a correspondence with i in  .  

(3) The generated new datasets are then merged into the original dataset separately to form two datasets with 

increasing sample capacity and maintaining the original distribution characteristics, denoted as  and , where 

i=1,2,3,4 and have correspondence with i in  . The formation can be expressed as follows:  

It should be noted that the "+" operator here does not indicate the operation of a set, but the direct merging of data 

sets. The sample sizes of , , , and  are 10,000, 15,000, 20,000, and 25,000, respectively. Similarly, the data set 

sequence  also has the same sample size. The  is the data set of the target distribution after supplementation.  

The experimental hardware environment is 3.30 GHz, the CPU is AMD Ryzen9 5900HS, and the GPU is RTX-

3060. in the Wasserstein gradient descent flow procedure in part 1 of the experiment, the optimal transmission 

distance of the power flow dataset is computed with the help of solvers for the optimal transmission distance 

provided by the geomloss [10] and POT [11] libraries, and the above Both libraries have the option of CUDA 

acceleration, which accelerates the solution of the Wasserstein distance using GPU parallel computing. One of 

them is the Compute Unified Device Architecture (CUDA), a computing platform introduced by NVIDIA, a 

graphics card manufacturer.  

4.2. Results and Discussion  

The effect of the power flow dataset supplementation method is analyzed using the optimal transport distance 

calculation method for power flow datasets given in Section 2.1. Comparing the distribution differences between 

the four randomly sampled datasets  used as initial values and the four target distribution datasets  generated 

by the method in this paper, the  between the two datasets is found, where  takes the value of the 1st column and  

takes the value of the 1st row, the result is shown in Table 1 and Table 2 as follows:  

Table 1:  values between  

          

  
0  1.59  1.57  1.93  

  
1.59  0  1.76  1.48  

  
1.57  1.76  0  1.61  

  
1.93  1.48  1.61  0.  

Table 2:  values between   
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0  0.58  0.64  0.63  

  
0.58  0  0.67  0.66  

  
0.64  0.67  0  0.78  

  
0.63  0.66  0.78  0.  

Where  is also at the same level as,  and  with  . Based on the above results, it can be seen that:  

It is logical that the between the initial randomly sampled distributed datasets of the motion is larger than the 

between the generated datasets, whose distribution properties dictate that the samples will appear randomly in a 

smaller range. This is also a side verification that the Wasserstein gradient flow method generates indeed datasets 

with the target distribution.  

(1) The values of  between two  are at the same order of magnitude level, and there are no values that are 

significantly smaller than others and converge to zero. This phenomenon reflects the significance of initial dataset 

selection in Wasserstein gradient flow, setting different initial datasets, and the datasets of the final generated 

target distribution will not be exactly the same, still maintaining the same distribution but the data are not 

duplicated. 

5. Conclusions  

In order to take full advantage of the distribution characteristics of the power flow data for offline analysis and 

adjust the dataset flexibly and efficiently, this paper investigates the method of adjusting the power flow dataset 

considering the distribution characteristics. The Wasserstein gradient flow-based sample supplementation method 

for power flow datasets is proposed to convert the dataset generation.  

Process into a generalized optimization problem of finding extrema, and our goal is to obtain the complete motion 

trajectory of the dataset under the gradient flow. The motion trajectory can provide a sequence of datasets with 

progressively decreasing variance from the target dataset distribution, in which we can select the datasets with 

the appropriate degree of variance to add to the original data set as needed, where the initial value of the evolution 

equation also has an important influence on this process. This operation also enables a sample supplementation 

method that maintains the distribution properties, i.e., the supplemented samples still maintain the same or similar 

distribution properties but are not simple duplicates of the data in the original dataset. Finally, the effectiveness 

of the Wasserstein gradient flow method is verified by experimental examples.  
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