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Abstract:

The application of artificial intelligence (AI) methods to grid analysis has been extensively studied. The
distribution characteristics of the power flow dataset required for the training of Al methods will affect
the performance of Al models. The power flow data accumulated for offline analysis are manually
adjusted limit operation mode and distributed at the grid operation boundary, so the power flow
dataset for offline analysis has good distribution characteristics. However, its small number and low
manual generation efficiency make it difficult to exploit the advantages of this distributed characteristic
dataset. In this paper, a power flow dataset sample supplementation method based on Wasserstein-
gradient flow is proposed to realize the adjustment of the power flow dataset considering the
distribution characteristics by solving the dynamic process of the dataset for Wasserstein-gradient
flow. It is also tested on the CEPRI-36 node grid power flow dataset, and the generated supplemental
data all have similar distribution characteristics with the target dataset, which verifies the effectiveness
of the method.
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1. Introduction

Al methods applied to power grid analysis require training of power flow datasets. The existing sources of power
flow data are mainly generated by offline simulation and online data collection, but both the online and offline
power flow datasets accumulated in the past cannot directly meet the requirements. The power flow data for
online analysis is the actual operation mode collected, which constitutes a large amount of sample data, but the
distribution is not uniform and there are many similar samples, which cannot meet the requirements of covering
comprehensively and clear boundary; the power flow data for offline analysis is the extreme operation mode
manually adjusted, which constitutes a strong sample typicality and is distributed at the stable boundary of the
grid operation, which helps to achieve the requirement of clear boundary, but the data volume is small and it is
difficult to cover all the typical working conditions of the grid operation, which cannot meet the requirement of
covering comprehensively. If the dataset is supplemented by targeting the distribution characteristics of the data
for offline analysis, the obtained dataset will satisfy the two requirements mentioned above. Since the research
on data set adjustment methods considering distribution characteristics is relatively weak, it is difficult to take
full advantage of the distribution characteristics of the data for offline analysis.
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Optimal transport theory is the study of the relationship between distributions and distributions. Gradient flow
based on optimal transport theory is an important tool in applied mathematics for constructing dynamic models
in feature spaces [11, gradient flow has been extensively studied in the context of metric spaces 12! and has been
found to be deeply related to partial differential equations (PDES)

In view of this, we study a power flow dataset supplementation method considering the distribution
characteristics, which transforms the power flow dataset data into Wasserstein space in the form of distribution,
then transforms the power flow dataset adjustment problem into the problem of solving the extreme value of the
energy functional by constructing the functional, then solves the curve evolution equation by using the variational
method, and finally solves the evolution equation to obtain a set of power flow dataset series labeled by process
time. This paper is organized as follows: Section 2 presents the relevant technical background, including optimal
transmission theory and gradient flow; Section 3 introduces the Wasserstein-gradient flow based power flow
dataset supplementation method. Section 4 verifies the effectiveness of the method by testing it in the power flow
dataset of the CEPRI 36 node power grid model.

2. Technical Background

2.1.  Optimal Transport and the Optimal Transport Dataset Distance

Optimal transport theory is the study of the problem of interconversion between distributions, where the optimal
transport distance (also known as the Wasserstein distance) is a quantitative tool to describe the degree of variation

between ¢: XX X R the optimal transport problem is distributions. For _ two subsets of measures
a,B€P(X)and the transport cost function

Where &nd ar®  OT.(o,8)= Ig(inm / c(z,,x,)dm (z,2,), features from the samples in the two measures,
and (e, 3) is the @ B ’ set of transport schemes between and , i.e., the

coupling with these twQdnepsuesasMarginabPmeasues; . = = 6 }.

Where forc xzyﬁzls d%?cl,lg?_i the p-Was‘?@[sieér%cd(ia'E%gg. As .the name suggests, defines a true (.jistance on 4, Thus,
with the forme e distance conflguratlonT; e metric space , called the (p-)Wasserstein space. In practice,
the solution method is often Wv&gj 23(79( Rgg%a)rized version of Eq. (1) with an additional entropy term

AH(m) [5]. ' Y

The dual formula of the Kantorovich problem is

OT.(a,3)= sup fsoda + fgo“dﬁ, (3)
welX) ) v X
where ¢: X—R is called the Kantorovich potential function and 1s its c-conjugate:
¢°(z)= infe(z,2') —p(z).For ¢(z,2")=|z—2a'|?, ¢° isthe Fenchel conjugate. o
z'eX
In the literature [6] it was demonstrated that there is also a dynamic formula for OT:
1
witea,8) = min [ [ 17601 *du(2)at, @
Vedo Ja

where the minimum is taken from the measure-domain pair satisfying po=0a,ii =0 and the
continuity equation:
(5)
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This formulation corresponds to finding the shortest path satisfying the conservation of the mass constraint in the
metric path # from to and the voélocigl field V., even if the path length is the smallest (formally the integral of
the metric derivative). Thus, in contrast to the global correspondence

(via¥ in the static formulation (Eg. (1)), the dynamic formulation focuses on the local transport (via

Nt)_

It is appealing to use OT to define a distance between datasets, but this is non-trivial for labeled datasets. The
main issue is that problem (1) would require an elementwise metric d , which for labeled datasets means defining
a distance between pairs of feature-label pairs. For the general case where Y might be a discrete set (i.e.,
classification), this seems daunting. In recent work, researchgrs [ propose a hybrid metric on this joint space that
relies on representing the labels as djstributions over features o . E.g., for a digjtclgssification dataset, would
be a distribution over images with labgl(;, .y » = 4., (z,2") * + W? (a2, d,

With this, they define a metric on as . Using as the greygg cost in eq. (1) yields a distance between measures on
, and therefore between datasets, which they refer to as the Optimal Transport Dataset Distance (OTDD):

1
OTDD(Da,Dﬁ)A< min / dz(z,z’)dw(z,z’))z
rell(a.p) ) zx z .

(6)

The main appeal of this distance is that it is defined even if the label sets of the two data sets are nonoverlapping,
or if there is no explicit known correspondence between them (e.g., digits to letters). It achieves this through a
purely geometric treatment of features and labels. Another advantage is its computational scalability, which relies
on using a GausSian aﬁﬁ%x%tion on the per-label distributions, i.e., modeling each as , whose mean and
covariance are estir{ged:from samples. In that case, the distances can be computed in closed form, so no
optimizéiﬁéﬁﬁé) needed to evaluate inside problem (6).

22.  Grandient Flows

Consider a functional 4hd a’@int = < X. A gradient flow is an absolutely continuous curve that evolves from in
the dirdétion of steepest descent of . When is Hilbertian and Hs suffici&ntly smooth, its gradient flow can be
succictly expressed as the solution of a differential equation with initial condition . Different discretizations of
this equation yield papulargrattient degcent schemes, such as moraeajuarand acceleration [
3.  Wasserstein-Gradient Flow Based Sample Replenishment Method for Power Flow Datasets
The power flow dataset data are transformed into Wasserstein space, and then the power flow dataset adjustment
problem is transformed into the problem of solving the extreme value of the energy generalization function by
constructing the energy generalization function, and then the curve evolution equation is obtained by using the
variational method, and finally the evolution equation is solved to obtain a set of power flow dataset series labeled
by process time. The distribution difference between this serial dataset and the target distribution dataset gradually
decreases with the increment of the time principal scale, and finally an adjusted dataset with controllable
distribution difference is obtained.
The main problem that needs to be solved for a specific implementation is how to choose the objective functional.
3.1. Functional Minimization via Gradient Flows
Given a dataset objective expressed as }Q(fu)nctional F . P(Z2)—R  we seek a joint measure » € PA(2) realizing:
(7) min P

pEP(2)

*

P
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We propose to approach this problem via gradient flows, i.e., by moving along a curve of steepest descent starting
at until reachingp%t solution . Unlike Euclidean settings, here the underlying space is infinite-dimensional and
non-H\ﬁ’ngian, thus requiring stronger tools.

First, the notion of derivative can be extended to functionals on measures through the first variation,

denoted by g—i . With this, we characterize the gradient flow (P) =0 of F as the solution of:

R SF
8t,0t:VWF(Pt):V'(PtV%(Pt)) (8)
which can also be seen as a continuity equation (4) for the measure »: and the velocity field
_ véi( )
s

Our main functional of interest will be the Wasserstein distance to a target distribution:
T5(p) =Wa(p,8) , which we realize using the OTDD (Section 2.1).
Hence, we assume the objective of interest can be cast as:
F(p)=T5s(p)
The numerical solution of the functional can be found in the literature [9].

4.  Experimental Validation

4.1. Example Introduction

The samples in the power flow dataset of this paper describe various modes of operation of the grid model
CEPRI36, and the grid structure is shown in Figure 1, where some nodes are connected to capacitors or reactors
that are not involved in regulation, and there are 18 nodes of generating units or loads involved in regulation, with
the nodes injecting power as the input feature values, for a total of 36 variables, i.e., the sample contains a feature
dimension of 36 dimensions.

wl -] i

Figure 1: CEPRI36 grid model topology connection diagram

For sample supplementation of the target distribution dataset using a Wasserstein gradient flow method. Among
them, the target distribution dataset uses 5000 manually generated samples with distribution characteristics
similar to those of the power flow dataset for offline analysis, whose samples are mainly distributed near the
stability boundary. The initial dataset for the sample adjustment generation process is chosen from the randomly
generated dataset.
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For this purpose, the experimental design is as follows

The original random dataset is denoted as Zhe target distribution dataset is denoted as D , and then four randomly
generated data sets are denoted as , where i=1,2,3%

) Using the four data sets D.. as the initial databget and as the target data set, a gradient flow operation is
performed to select the appropriate four data sets according to OTDD, denoted as L. , where i=1,2,3,4, and there
is a correspondence with i in D, .

(3) The generated new datasets are then merged into the original dataset separately to form two datasets with
mcreasngsampIelgapacny and maintaining the original distribution characteristics, denoted as and , where
i=1,2,3,4 and have correspondence with i in D... The formation can be expressed as follows:

It should be noted that the "'+" operat@rAhel%Adoé%‘tnot indieate the operation of a set, but the direct merging of data
sets. The sample sizes of , , , and are 10,000715,000, 20,000, and 25,000, respectively. Similarly, the data set
sequence also has the same sample size. The Ds. is the data set of the target distribution after supplementation.
The experimental hardware environment is 3.30 GHz, the CPU is AMD Ryzen9 5900HS, and the GPU is RTX-
3060. in the Wasserstein gradient descent flow procedure in part 1 of the experiment, the optimal transmission
distance of the power flow dataset is computed with the help of solvers for the optimal transmission distance
provided by the geomloss % and POT [ libraries, and the above Both libraries have the option of CUDA
acceleration, which accelerates the solution of the Wasserstein distance using GPU parallel computing. One of
them is the Compute Unified Device Architecture (CUDA), a computing platform introduced by NVIDIA, a
graphics card manufacturer.

4.2.  Results and Discussion

The effect of the power flow dataset supplementation method is analyzed using the optimal transport distance
calculation method for power flow datasets given in Section 2.1. Comparing the distribution differences between
the four randomlyﬁgmpled datasets D., used as initial valuesdgp@ghgzgour target distribution datasets generated
by the method in thispaper, the between the two datasetszs found, where takes the value of the 1st column and
takes the value of the 1st row, the result is shown in Table 1 and Table 2 as follows:

Table 1: dor values between D
dor(Dy, D) D, D, D, D,
D, 0 1.59 1.57 1.93
D, 1.59 0 1.76 1.48
D, 1.57 1.76 0 1.61
D., 1.93 1.48 1.61 0.
Table 2: dor values between D,
d()T (Dl,Dg) Db] -l)b2 Db;; Db.
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D, 0 0.58 0.64 0.63
D, 0.58 0 0.67 0.66
D, 0.64 0.67 0 0.78
D, 0.63 0.66 0.78 0.

Where D.. is also at the same level as,Pand

ith d&2# Based on the above results, it can be seen that:

It is logical that the bétween the initial randomly sampled distributed datasets of the motion is larger than the
between the gerﬂeflated datasets, whose distribution properties dictate that the samples will appear randomly in a
smaller range. This is also a side verification that the Wasserstein gradient flow method generates indeed datasets
with the target distribution.

(1)  The values of 4. between two dor are at the same order of magnitude level, and there are no values that are
significantly smaller than others and converge to zero. This phenomenon reflects the significance of initial dataset
selection in Wasserstein gradient flow, setting different initial datasets, and the datasets of the final generated
target distribution will not be exactly the same, still maintaining the same distribution but the data are not
duplicated.

5. Conclusions

In order to take full advantage of the distribution characteristics of the power flow data for offline analysis and
adjust the dataset flexibly and efficiently, this paper investigates the method of adjusting the power flow dataset
considering the distribution characteristics. The Wasserstein gradient flow-based sample supplementation method
for power flow datasets is proposed to convert the dataset generation.

Process into a generalized optimization problem of finding extrema, and our goal is to obtain the complete motion

trajectory of the dataset under the gradient flow. The motion trajectory can provide a sequence of datasets with
progressively decreasing variance from the target dataset distribution, in which we can select the datasets with
the appropriate degree of variance to add to the original data set as needed, where the initial value of the evolution
equation also has an important influence on this process. This operation also enables a sample supplementation
method that maintains the distribution properties, i.e., the supplemented samples still maintain the same or similar
distribution properties but are not simple duplicates of the data in the original dataset. Finally, the effectiveness
of the Wasserstein gradient flow method is verified by experimental examples.
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