ISSN: 2997-6243

Volume 12 Issue 2, April-June, 2024

Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

COLLISION-INDUCED CHARGE TRANSFER BETWEEN PROTONS AND 2S-STATE LITHIUM ATOMS

Rakesh Kumar Sharma

Department of Physics, North-Eastern Hill University, Shillong, Meghalaya, India DOI: https://doi.org/10.5281/zenodo.17414543

A .	het		-4
Δ	nei	ra	ľТ

Single charge transfer cross-section in H^{\square} \square Li \square 2s \square collisions has been studied in the frame work of the Coulomb-Born Distorted Wave approximation (CBDWA). The differential as well as total cross-sections have been calculated in the energy range from 10keV to 1MeV. The results so obtained have been compared with other's available results.

Keywords: Coulomb-Born distorted wave approximation. Differential cross-sections, Electron captureTotal cross-sections,

I.INTRODUCTION

Over decades, the charge transfer collisions from proton with alkali metal atoms have been studied extensively. Theoretically the study of proton-alkali metal atoms becomes very complicated due to the multi electron character of the target atoms. For many practical processes the alkali atoms can be considered as one electron system just like hydrogen atom. We have also considered only the valence electron with single particle Slater orbital wave functions. The charge of the alkali metal has been taken as unity in this case.

Ferrante et al [1] have studied the valence and core electron capture in proton-lithium ($H^{\square} \square Li$) collisions using the Oppenheimer Brinkman Kramer's (OBK) approximation. Ferante et al [2] have also studied electron capture process in proton-alkali atom collisions using the Eikonal approximation to obtain the total cross-sections. In another approach Daniel et al [3] have used the Eikonal approximation treatment to obtain the total charge transfer cross-section for high energy proton-alkali atoms charge transfer problem. Erolamaev [4] studied electron capture by proton from L to K shells of Li- atoms using two centre orbital methods. A modified two centre atomic orbital expansion method has been applied by Fritsch et al [5] for electron capture in

($H^{\square} \square Li$) collisions. Sato and Kimura [6] have used a multi-state perturbed stationary state method for charge transfer cross-sections at low energy to intermediate impact energy. Very recently Lur and Saenz [7] have studied proton-anti-proton collisions with alkali atoms Li, Na and K and calculated only ionization and excitation and have not considered the charge transfer in the energy range from 2 to 1000keV by using a timedependent channel-coupling approach.

In this paper we have studied only single charge transfer collisions in proton-lithium atom collisions by using the Coulomb-Born Distorted wave approximation (CBDWA) which has been recently used by Gharban- Adivi [8] in proton-Helium collisions. In this approximation the distortion produced by the Coulomb potential are included in

Applied Sciences Journal
ISSN: 2997-6243|
Volume 12 Issue 2, April-June, 2024
Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

the T-matrix formalism. As the differential cross-sections give more extensive information of col	lision dynamics,
we have calculated differential cross-section for wide range of energy for the process we have un	nder taken.
Throughout this paper, we have used the atomic units in which (m=e= \square =1) except for the cros	s-
Sections which has been calculated in unit of $\Box a_0^2$.	
II. Theory:	
We have considered the process	
We have considered the process $H^{\square} \square Li(2s) \square H \square 1s \square \square Li^{\square} (1.1)$	
\square	
The coordinate systems for the process (1) are as: R_i is the position vector of hydrogen atom relationship.	ative to the
\[\textsize \text{coordinate systems for the process (1) are as: \(\text{N}_t \) is the position vector of hydrogen atom relations. \[\text{\$\texitt{\$\texit{\$\texit{\$\texit{\$\texit{\$\text{\$\texitt{\$\texit{\$\texit{\$\texi{\$\texi{\$\e	tive to the
centre of mass of electron and target ion. R_f is the position vector of the target ion with respect to	the centre of
mass of proton \square and electron. r and r are the vector separation of the electron from Li atom and	d H respectively.
R is the inter-nuclear separation.	1
The transition matrix T_{if} from an initial state i to a final state f in the CBDW approximation fo	r the process (1)
are given by	
www.iosrjournals.org	
\square $^*V_f^*\square_i$ (1.2)	
$T_{if} \square \mathit{drdR}_{\!f\square f}$	
Where \Box_i and \Box_f are the wave functions for the process (1.1) in the initial and final channels respectively.	ectively and are
given by	
$\Box_i \Box \Box_i \Box r' \Box \Box_i \Box R_i \Box$ (1.3) and	
$\Box_f\Box\Box_f\Box r\Box\Box_f\Box^R\Box$ (1.4)	
Where again,	
$\Box_i \Box r' \Box =$ wave function of the Li-atom in the ground state.	
\square $e\square r$	
$\Box_f \Box r \Box$ = wave function of the hydrogen atom in 1s state \Box	(1.5)
$\Box R \Box_i \Box = eik \Box i \ .R \Box \ i$ is a plane wave in the initial channel.	
2 1	
$\Box f \Box Rf \Box = e \Box^{\Box\Box} \Box \Box \Box \Box i \Box \Box eikf . Rf 1F1 \Box i \Box ; \Box ikf Rf \Box ikf . Rf \Box is Coulomb wave$	

Applied Sciences Journal
ISSN: 2997-6243|
Volume 12 Issue 2, April-June, 2024
Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

Where k_i and k_f are the momentum vectors in the initial and final channels respectively.
$\Box \bigoplus_f$ is the repulsive Coulomb parameter and
k_{-f}
$_1F_1 \square i \square; \square ik_f R_f \square ik_f.R_f \square = \text{confluent hyper-geometric function.}$
For Li-atom we have used single particle wave functions of Simsic and Williamson Jr [9] of the type
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$2\;\square$
(1.6)
Where $S_1 \square 0.65$, $C_1 \square 0.39888$
$S_2 \square 2.7, C_2 \square \square 1.496099$
Now the transition matrix element for the process (1) will be obtained by putting (1.5) and (1.6) in equation (1.2)
we get $Tif \Box \Box dr dR \Box \Box fi \Box k \Box i$ $.R \Box i$ $\Box k \Box f.R \Box f$ $\Box e \Box \Box r$ $e \Box \Box \Box /2 \Box \Box 1 \Box i \Box \Box 1$ $F1$ $\Box i \Box ; \Box ik fRf \Box ik \Box i$
$.R\Box f \Box \ e$
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$Tif \Box \Box dr dR f e i \Box ki .Ri \Box kf .Rf \Box e \Box \Box \Box /2 \Box \Box 1 \Box i \Box \Box 1 F1 \Box i \Box ; \Box ikf Rf \Box ik\Box f .R\Box f \Box$
$\square \square \square \square r1 \square r1 \square r2e \square S2r \square C1r'e \square S1r \square \square r$
$T_{if} \square \square e^{\square \square / 2} \square \square \square \stackrel{\wedge}{i} \square \square I \tag{1.7}$
Where
$I \ \Box \Box \Box dr dR \Box \ \Box f \ ei \Box k \Box f . R \Box f \ \Box k \Box f . R \Box f \ \Box e \Box \Box r \ 1 - F_1 - \Box i \Box; \Box ik \ f \ Rf \ \Box ik \Box f . R \Box f \ \Box \Box \Box \Box r \ 1' \ \Box \Box \Box \Box c c c c c c c c c c c c c c c$
$11 dd \square \square 1 11 dd \square 1 \square \square \square \square \square \square \square \square \square $
a = 0
Where
$\Box 1 \Box x \Box$
$g \square x \square$ 2
\square_a
$\square i \square \square 1$ 2 2 $\square \square i \square$
$\square \ q2 \ \square \ \square 2 \ \square \ \ \square \ q$
$\square \square $

Applied Sciences Journal
ISSN: 2997-6243|
Volume 12 Issue 2, April-June, 2024
Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Box a \Box a g \Box a$ M^P and $\Box_b \Box M^T$, $M_P \Box$ mass of projetile and $M_T \Box$ mass of target atom $\Box_a \Box$
$\overline{M_P \Box 1} M_T \Box 1$ Putting equation (1.8) in the equation (1.7), the matrix elements are obtained. While solving equation (1.8), the technique used by Tiwari [10] and Gharban-Adivi [8] have been used. The differential cross-sections [11] for the charge transfer from Li-atom to 1 s state of hydrogen atom are given by
$d \square \square^i \qquad {}^f k^f 2 \qquad \qquad$
\square \square i Where k_i and k_f are related by the energy conservation relation
$k_{2} k_{2} i \Box f \Box E_{f} \Box E_{i} \Box E $ $d \Box 4_{2}k T_{if} \qquad (1.9)$ (1.10)
$ {2\square_{i}} {} 2\square_{f} $ Where $E_{i} \square$ Binding energy of Li-atom $E_{f} \square$ Binding energy of the H-atom are obtained from Moore's table[12].
$\Box_i \Box^I M^P \Box M^T \Box 1 \Box$ and $\Box_f \Box^I M^P \Box 1 \Box$ are the reduced masses of the system in the initial and final
$MP \square MT \square 1 \ MP \square MT \square 1 \ 0$ channels. The total cross-sections are obtained by integrating equation (1.9) Applied Sciences Journal

ISSN: 2997-6243

Volume 12 Issue 2, April-June, 2024

Journal Homepage: https://ethanpublication.com/journals/Eq

Official Journal of Ethan Publication

\square	_
(1.11)	
Since, the charge transfer differential cross-sections f	or atomic collisions with heavy particle projectiles is
strongly peaked in the forward direction and falls rapidly	with increasing scattering angle \Box , we have used suitable
transformation of the integration variable instead of \Box as	
$k_i^2 \square 1 \square \cos \square \square \square 1^{\square} z (1.12) $	
$1\Box z$	

The values of z are supplied by Gaussian- quadrature points when convergence is insured. While

The one dimensional integration from 0 to 1 are done numerically by using the Gauss-Legendre quadrature formula. The convergences in both cases for differential and total cross-section have been insured by increasing the number of Gaussian points. In this way the value of cross-sections are obtained with sufficient accuracy.

III. Results and discussions:

We have calculated the charge transfer cross-sections in the frame work of CBDWA into the 1s state of hydrogen in proton-lithium atom collisions for the incident energy range varying from 10 keV to 1MeV. The total cross-sections of 1s state of hydrogen in the energy range 10 keV to 1 MeV in units of $\Box a_0^2$ have been compared with the results obtained in different approximations in table 1. The first Born approximation (FBA) and OBK results are considerably higher while the eikonal results are slightly higher than our results above 120 keV but between 70 to 100 keV our results are in good agreement with both FBA and eikonal results. Below 70 keV other results are not available for comparison.

Table : Total cross-sections for the process $H^{\square} \square Li(2s) \square H(1s) \square Li^{\square}$ in units of $\square a_0^2$.

Incident energy	CBDWA	□eik	\Box OBK	$\Box FBA$
keV	CDD \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
10	0.46736(2)			
15	0.17964(2)			
20	0.85041(1)			
30	0.43704(1)			
40	0.13476(1)			
50	0.18319(0)			
60	0.75029(-1)			
70	0.32055(-1)	0.11975(-1)	0.78162(-1)	0.51665(-1)
80	0.14092(-1)	0.86291(-2)	0.26978(-1)	0.17832(-1)
90	0.63179(-2)	0.64477(-2)	0.11458(-1)	0.75737(-2)
100	0.28816(-2)	0.48947(-2)	0.68400(-2)	0.45212(-2)
110	0.13522(-2)	0.37748(-2)	0.54443(-2)	0.35986(-2)
120	0.67719(-3)	0.29358(-2)	0.48988(-2)	0.32381(-2)

ISSN: 2997-6243

Volume 12 Issue 2, April-June, 2024

Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

140	0.27040(-3)	0.18760(-2)	0.41165(-2)	0.27210(-2)
160	0.21481(-3)	0.12191(-2)	0.32779(-2)	0.21667(-2)
180	0.21048(-3)	0.83367(-3)	0.25032(-2)	0.16546(-2)
200	0.20210(-3)	0.56149(-3)	0.18730(-2)	0.12380(-2)
300	0.10355(-3)			
400	0.44827(-4)			
500	0.20484(-4)			
1000	0.10939(-5)			

 \Box^{CBDWA} : present the results in Coulomb-Born Distorted wave approximation, \Box^{eik} : Daniele et al's results in eikonal approximation, \Box^{OBK} : Ferrante et al's result in Oppenheimer-Brinkman and Kramer's approximation quoted by Daniele et al and \Box^{FBA} : Estimated results on OBK. The b racketed numbers denote powers of ten by which each entry should be multiplied.

For charge transfer processes the usual form of the first born approximation is not asymptotically correct at high energies [13]

Fig.1 shows the differential cross-sections for (p-Li) collisions at incident energies 10, 15 and 20 keV.

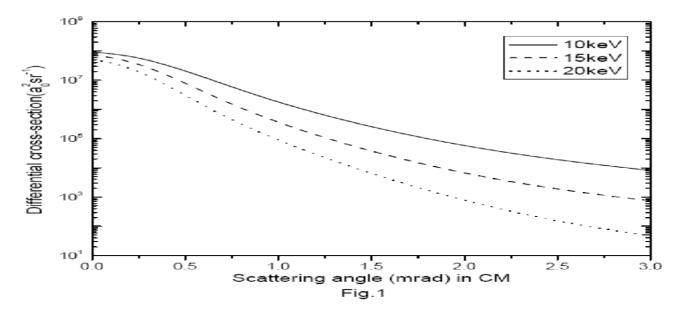


Fig.1. Differential cross-sections (CM system) for the charge transfer process $H \Box Li(2s) \Box H(1s) \Box Li \Box$ at energies 10, 15 and 15 keV.

Fig.2 shows the differential cross-sections at energies 80,120 and 300 keV. Fig.3. shows the differential Cross-sections at energies at 400 and 1000 keV.

ISSN: 2997-6243

Volume 12 Issue 2, April-June, 2024

Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

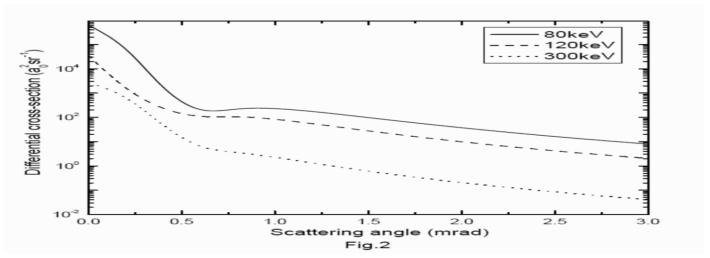


Fig.2 Differential cross-sections (CM system) for the charge transfer process H^{\square} \square Li (2s) \square H (1s) \square Li^{\square} at energies 80,120 and 300 keV.

In the fig.1 the nature of the curves are of the similar type. In fig 2. We have observed pronounced dip at energy 80 keV at about .6 mrad and similar nature with less dip have been observed at energies 120 and 300 keV. In fig3. The dip is found at .6 mrad at both the energies.

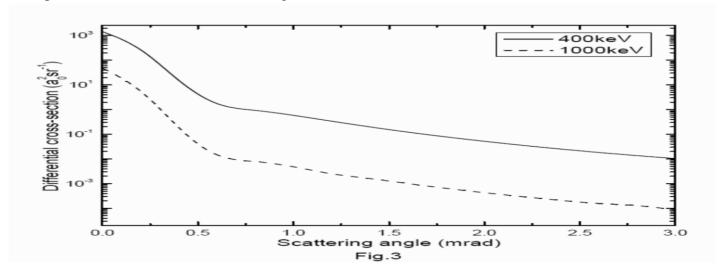


Fig.3. Differential cross-sections (CM system) for the charge transfer process $H^{\square} \square Li$ (2s) $\square H$ (1s) $\square Li^{\square}$ at energies 400 and 1000 keV.

Conclusions:

The study of charge transfer reactions in atomic collisions are of great interest both from scientific point of view as well as from its wide applications in the diverse fields of Physics. Studies of these reactions are helpful from plasma diagnostics. Many such atomic collisions processes are relevant to the problems associated with fusion

ISSN: 2997-6243

Volume 12 Issue 2, April-June, 2024

Journal Homepage: https://ethanpublication.com/journals/E9

Official Journal of Ethan Publication

reactors. We observe that CBDWA gives better results over OBK and FBA.More theoretical and experimental results are needed to compare the results at higher energies.

References:

W.Fritsch and C.D.Lin, J.Phys.B 16, 1595(1983)

H.Sato and M.Kimura, Phys.Lett. 36A, 286(1983)

Armin Lur and Alejandro Saenz, Phys.Rev.A, 77, 052713(2008)

E.Ghanbari-Adivi, J.Phys.B 44, 165204(2011)

P.Simsic and W.Williamson Jr, J. Chem. Phys. 57, 11(1972)

Y.N.Tiwari, Pramana, J.Phys, vol.70, No.4, 753(2008)