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Abstract
In this paper Spinors of Euclidean spaces of Geometric Algebras over a real field are defined and their algebraic and

rotational properties are discussed. The advantage of using Spinors in solving problems of Celestial Mechanics is
illustrated by studying the tracking problem of near Earth objects. It is shown that this technique of using spinors can
replace the conventional methods and also provide a richer formalism.
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l. Introduction

Spinors are defined as a product of two vectors in i-plane or i-space (Hestenes, 1986). Spinors can also be viewed
as elements of a minimal left ideal (Hestenes, 1966 & Lounesto, 2001). Rotations can be treated as group actions
of Spinors on the vector space over which the Geometric Algebra is constructed. There are different
parametrizations for Spinors in Geometric Algebra. Thus rotations also have different parametrizations depending
upon the form of the Spinor considered.

Sequences of rotations play a key role in tracking near earth orbiting objects such as an aero plane or a spacecraft
(Kuipers, 1999). There exists a sequence of Spinors corresponding to every sequence of rotations. The purpose
of the present paper is to compare our results with the results obtained by using Quaternions and to show that
Geometric Algebra works as an efficient tool to study problems in Celestial Mechanics.

. Geometric Algebra

Let En be an n-dimensional vector space over R, the field of real numbers, together with a
0000 - symmetric, positive definite, bilinear form g :EnxEn— R denoted by g(x, y) OX.y, VX, y€En.
There exists a unique Clifford Algebra (C(En), ) which is a universal algebra in which &, is embedded.
Henceforth, we shall identify &, with(1(En) . We choose and fix an orthonormal basis Bn [ [J€1,ez,....,en~ for Ey.
Let Ao [J " Jer 1= R1a=R Al (1 span {ei} =En
And ingeneral,  Axr {[JaSeS}

s [k |

Then C(En)=@A«

Clearly dim Ax [InCx and dimC(En)=2".

Geometric Algebra is constructed by taking the geometric product of the vectors in the n - dimensional vector
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[0 space En, giving multivectors as its products. The ‘Geometric Product’ of vectors denoted by ab , as

oo o

abl =all. [0b +alJAbl] O e (1)
oo oo

ba=b.a+bra=a.b-anb .............. ()

As every element of C(5y) is in the form A = A o® A1 .... & An, itis called a multivector. A multivector is

said to be even (odd) if A =0 whenever r is odd (even). A detailed construction was given by Hasan (1987).
k-blade: Outer product of ‘k’ number of 1-vectors is called a k- blade. Note that

es [ %1%2 ....5misa m - blade.

Define the set®, = {+°s /SCN}. Clearly G, is a group with respect to the operation ‘Geometric Product’ of the

elements defined by s®r=01(S,T)%s~T with inverse of es and {¢-} as the identity. &, is a ‘free group’ with B, as

a finite basis. ¢, =2"1,

2.1 Euclidean nature of Geometric Algebra

2.1.1 Definition: Norm of a multivector The concept of ‘norm’ of a multivector is very important to define

division in Geometric Algebra.

To every A€ C(Ex) the magnitude or modulus of A is defihdd gs A=ala’2.0

With this definition of norm, C(En) becomes a Euclidean algebra. The inverse of a non zero element of A of

C(En), is also a multivector, defined by ACL=4% A

2.1.2 Definition : k- space  Every k- vedtor A determines a k- space

2.1.3 Definition: n—dimensional Euclidean space C(En) : For a n-vector An, designate a unit n - vector ‘i’

proportional to . That is n = fa .

‘i denotes the direction of the space represented by “n. [

2.1.4 Definition i- space : The set of all vectors x€&, which satisfy the equation xAi =0, is said to be an i- space

and is denoted by ©(i). Sucha n - vector ‘i’ is called the pseudoscalar of the plane as every other n -vector

can be expressed as a scalar multiple of it. [1 Note (a) x="10J1+2[J2+.....+*~n(In is a parametric equation of

the i- space. *1,%,,...,"n are called the rectangular components of vector x with respect to the basis {(11,~2,.....,7in}

(Hestenes, 1986). [1(b) x=*111+*,[12 is a parametric equation of the i- plane. *1,*; are called the rectangular

components [lof vector x Withrespectto thebasis £179 21

2.2 Spinors in ‘n’ dimensions

2.2.1 Definition: Spinor The product of two vectors in the i- space is called a Spinor.

2.2.2 Definition: Spinor i- space : The Spinor i- space 'S ’ is defined as

Sn={R/ R=x[ly[], x[J, y[I €i- space }

S, =C3*(i) ifn<3.'S2’ can be related to complex numbers and'S3 ’ can be related to Quaternion Algebra.

Let *- =% 01+ *%[12+...+ *s00nand Y~ =Y1[01+ Y [12+.....+ Ys[In .

Then the elements in the Spinor i- space 'Sy’ are in the form

00 n n( )

R=xy=>Xx]yj+> xjyk-xkyj Oji0k j=1 jk=1

U
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R can be writtenas O+ i if n=2o0r3
Where 0=>Ynxjyj and [=Yn (Xj yk - xkyj) J=1
j,k=1

(e
\

Fig 1: i- plane of Spinors
2.3 Algebraic Properties of Spinors
2.3.1 Theorem: Sh={R/R=x0yl], X[, Yyl€E i-space }
(i) Sn is an abelian group with respect to the operation “ [] *defined as the addition of the coefficients of the
like terms similar to addition of polynomials.
(ii) Sn is a vector space over R .
Giiy  dim Sp=2"1
Spinor spaces Snin dimensions n > 2 do not satisfy commutative property. Hence they form division algebras
or associative algebras.
2.4 Euclidean space Cs(;)
For a trivector #3€3(i), designate a unit trivector ‘i * proportional to 3. Thatlis A= Asi .
‘i > represents the direction of the space represented by 3. [] -
The set of all vectors x which satisfy the equation xAi =0 , is called the Euclidean 3- dimensional vector space
corresponding to ‘i > and is denoted by “©3(i)’.
Ca()) can also be called an i- space, the trivector i is called the pseudoscalar of the space as every other
pseudoscalar is a scalar multiple of it. [J
X=x101+x2[12+x3[13 is a parametric equation of the i- spacewhere *1,*; and *; are called the [J
rectangular components of vector x With respectto thebasis £11 19 13} j- space of vectors
isa3— dimensional vector space with basis {D 1,012, D3}.
2.4.1 Definition : bivectors in (i) : 11=01i =0203; i2=02i=03[11; i3=03i=[11J2. The set of bivectors
in C3(i) is a 3-dimensional vector space with basis {i1,i2,i3}.
2.4.2 Spinors of Euclidean space Cs(j)
2.4.3 Definition: Spinor i- space The Spinor i- space 'S3’ is defined as
oo oo
S:={R/R=xYy, X, YEIi - space }
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S3 can also be denoted by 3*(E) or ©3*(i). R€%n ’ is a multivector, has a scalar part
‘[)” and a bivector part ‘[ i1+ i2 +[7i3".
TABLE 1: Comparison between Spinors of Euclidean plane and Spinors of Euclidean space

Spinors of Euclidean plane <5 (i) Spinors of Euclidean space C3(i)
Itisa Field It is an associative division algebra
Basis is isomorphic to the basis of i-planeof Basis is not isomorphic to the basis of
vectors i- space of vectors, asitcontains one more

element

Reversion is analogous to Complex Rewversion is anti-isomorphic to Quaternion
conjugation. conjugation.
Spinor basis is isomorphic to the basis of Spinor basis is anti-isomorphic to the basis of
Complex numbers Quatemion algebra.

2.5 Action of Spinors on Euclidean space, Rotations

Spinors of Euclidean space also can be treated as rotation operators on i - space of vectors that is the three
dimensional vector space E3 .

Unlike rotations in two dimensions, rotations in three dimensions are more complex as (i) the operation to be
considered is the group action by conjugation, giving Similarity Transformations.
(ii) The axis about which the rotation takes place is also to be specified. The resulting vector changes as the axis
of rotation changes. This can be shown in the following examples.

Rotate the vector x- about the axis [11, the axis perpendicular to the plane represented by the bivector i1=[11i
=02013.
Let x- € i - space of vectors and X~ =*1[J1+ %12+ %313 .
i1*0 i1=0302*00203=0302(*101+*202+*313)[1203=*1 01 - (*212+*3[13)

Rotate the vector - about the axis (12, the axis perpendicular to the plane represented by the bivector
i2=02i=03011.
™0 i,=010301*00301=0103(*101+202+*3013)1301="2[12 - (X1 1+*3[13).
2.6 Diferent parametrizations for Spinors of Cs(j)
2.6.1 Spinors of the i- space in half angle form

A unit bivector is treated as a representation of the direction of an area. It can also be treated as a
1 [0 representation of an angle, which is a relation between two directions. Hence for x, yeC3(i), let x", y" be
their directions which are elements of the i - space. From the definition of a Spinor of the i - space, the Spinor,
R=x"y" =x".y +x"Ay".
=cos A4A
1 sinl Alis thelnalf angle form of the Spinor R .
2 2
2.6.2 Spinors of the i - space in exponential form
1 sinfl| A -eah be written as (12A.
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R=cosA+A

2 2

Here A™ =x-Ay-, the bivector representing the plane of rotation and A gives the magnitude of the angle through
which the rotation takes place.

2.6.3 Quaternion form

R=x"y" =00+ 002003+ 203011+ 1301112

=0+ 10+ 02+ O3iz=0+0 |

Where [=x".y" and [=010203+0200301+03001[12= x"Ay"

It is the Quaternion form of a Spinor.

A oA | ]

The relations between various parameters are, [1= c0s , =A'sin

2 2

2.6.4 Euler Angle and axis form

N L

R=%12)i2 s the angle and axis form of the Spinor as a” is the axis of rotation and L gives the magnitude of the
angle through which the given vector is rotated. This is called Euler parameterization of rotations. The parameters
angle and axis are called Euler parameters.

2.6.5 Spinor Matrix form of a rotation

We denote a rotation by R or Q and rotation through an angle [1 by Rr or Qr. The use of Spinors to represent a
rotation gives the matrix elements directly by the formula e =0Jj . ex =[1j.(R[Jk). The advantages in using
Spinors as a substitute for all the other forms for representing rotations are (i) Spinors are coordinate free.

(ii) Spinors exists in every dimension, thus make it possible to perform rotations in higher dimensional spaces
also.

(iiiy  Spinors represent the orientation of the rotation but matrices do not.

(iv) It is easy to convert Spinors into the other forms as and when required.

2.7 Sequences of Spinors

Sequence or product of Spinors is also Spinor and hence a rotation. Spinors play an important role in the study
of the problems related to Celestial mechanics. 2.7.1 1-2-1 symmetric sequence of rotation

We consider the 1-2-1 symmetric sequence of rotations; the Spinor that represents the required rotation is given
as a sequence of three spinors about the base vectors is defined by

R =ROQURI=RO+QU+ ROFUKROIQUR,

Where R=e(1/2) iJ1[0=cos=2 +[12[13sin(12 , Q=e(1/2) ilJ2[J=cos[]2 +[13[11sin[]2,

R=e(1/2) iJ10)=cos[]2 +[12[13sin[]2

The new set of axes after rotation are given by ex =R[1k =RT[JkR

i T T

=ROQURIUKRIQURL

This can be converted into the matrix form by calculating the elements of the matrix (ejk) given as
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ejk =0Jj . ek =Rk

T T T el=R01=

ROQURIMIIROQIRMD

=ROTQUT (ROFUIRO)QUIRL

=RO¥ (QUT01QI)RM

=R, T [D1(cosI+301sin[1)]R

=R f[O1cosl] - (I3sin0]R-

=(R-"01Rr)cost- (Rr F03R;)sin

=[J1cos[] -[13(cos]+[1213sin])sin[]

=01cos(1+[12sin(Isin[] - [J3sin(]cos(]

T T T

Similarly e2=R[12= ROQURII2ROQURD

=[J1(sintIsin[1)+[12(cos[Icos(]- sin(Jcoslsin(J)+[3(sinCIcosl]+cos[Icos[Isin(])
T i T e3=R3=ROQURIOISROQLIRL

=01sinJcos[1+J2( -sinfJcosIcos[] -coslIsin[])+[J3(coslIcoslIcosl] - sinlIsin[]) cosl]  (sinCIsin(])
(sinlIcosl])

sinCJsinJ (coslIcoslI-sinClcosClsin(]) (-sinCJcos[lcos[I-cosIsin(l)
-sintJcosl] (sinCIcos[]+cos[]coslIsin(l) (cosClcoslIcos]- sinlIsin(l)

I11.  An application of sequences of spinors

3.1 Tracking problem

Rotation sequences are used to track a remote object such as a spacecraft or an aero plane.

Fig 2 Tracking Problem

In the figure 3, OXYZ is the frame of reference rigidly attached to the Earth. The origin ‘O’ is a point on Earth
from which we are observing the spacecraft.

XY plane is the Tangent plane to the Earth pointing towards North and East directions respectively. Z axis points
towards the centre of the Earth (NED frame of reference). ‘A’ indicates the direction of the spacecraft and ‘P’ is
the projection of A in XY plane. ' is the angle between the projection of the position vector of the spacecraft and
the X axis.

[ is the angle between the projection of the position vector of the spacecraft and the position vector of the
Spacecraft. [1 is called the ‘Heading angle’ and [ is called the ‘Elevation angle’ To locate the spacecraft we
use R R sequence of coordinate frame transformations where R ; rotates the XY plane through an angle [1 about
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Z axis in such a way that the X axis coincides with the projection vector OP, and R, rotates the XZ plane through
an angle [J about new y axis in such a way that
The newest ‘x’ axis coincides with the direction vector OA. The final direction of the X axis represents the
direction of the spacecraft.
R :R:Rj
3.2 Spinor Matrix form of the Tracking Transformation
The new set of axes after rotation are given by
i T
ek =Rk =R[JRck = RORO KRR
Where R(1=¢(1/2) i013[0=cos[12 +[11[12sinJ2 , RJ=e(1/2) i12[1=cos[12 +[13[]1sin[]2
This can be converted into the matrix form by calculating the elements of the matrix (ejk) given as
ejk =0Jj . ek =Rk
Let the final set of coordinate axes be {ex,k=1,2,3}. e1=Rc1=R-Rro1
=R o1(cosI+[11012sin[])
=Rr(o1c0s[1+[12sin(])
=02 OS] - [11(coslI+a3oisinil)sin(]
(ozllcost[HosoisinCIIcosI 2 sin
[ocosticos Iz sinlJ Doz cosising]
Similarly
e2 [JRo2 IRIORDc 2
= - o1sinlicosl]+[12 coslI+assinlIsin(]
e3=R[3=RORI3

=[lzcosI+[]Sin(]
Hence the corresponding matrix for the tracking transformation is cosl(]cos(] -
sin(Jcos(] sin[]
sin(] cos(] o
-coslIsin(] sinCIsin(] cos(]

3.3  Euler angles

Rotations transform one coordinate frame XYZ into another coordinate frame xyz preserving the angle between
them. Hence it preserves the orthogonality property of the basis vectors. There is another widely used system to
represent rotations is the system of Euler angles. Euler stated that every rotation can be expressed as a product of
two or three rotations about fixed axes of a standard basis in such a way that no two successive rotations have the
same axis of rotation. This theorem is known as ‘Euler’s theorem’. Thus every rotation can be divided further
into two or three rotations about the fixed axes of the standard basis.
3.4 Theorem Every rotation can be expressed as a sequence of Euler angles.
Proof: We shall prove this by establishing the relation between spinor sequence of Euler angles and the angles
of any arbitrary spinor sequence that represent the same rotation. As an example for an arbitrary rotation, let us
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choose the symmetric 1-2-1 sequence of Euler angles obtained above. Equating the matrix representations of both
we get the Euler angles in terms of [1 and [J.

RORO=ROQLR [I

cosl] (sinCisin(])  (sinCIcos(])

-sinlJcosl] (sinlJcos[l1+coslIcoslIsin(l) (coslIcoslIcosl] - sinCsin(]) cosllcos(] -

sinfJcos(] sin[]

sinf] cosl] o

-cos[Jsin(] sin{sin[] cos[] cos[]=cos(]cos(]

tan[] tan(]=

sin(J

sin - -

tan(= -

tan(]

These relations establish the existence of Euler angles and these relations can also be obtained using other methods
also. We shall prove this by using Spinor half angle method.

3.5  Spinor half angle method

N oL L

R-R-=R-QR-= Letp=2,g72,r=2,5=2,t = to avoid half angles

(cosg+12013sinq) (cos p+[11[12s8in p)=(cost+[12[1ssint) (coss+[I3(11sins) (cosr+[12[]ssinr)
~.cosgcosp+1112sin pcosg+1311singcosp -[12113singsin p

[100cost [ [2003sintl1C1cosscosr ] [2[13 cosssinr [l [z[]1sinscosr][11 ]2 sinrsins™

[ costcosscosr [ [12[03costcosssinr [1[Jzl]costisinscosr [10]1[]2costsinrsins
[102003sintcosscosr [Isintcosssinr [z [1sintsinscosr [13l11sintsinrsins

[1 costcosscosr [Jsintcosssinr [12[]zcostcosssinr [1[2[]3Sintcosscosr

[ z005sintsinscosr (1 002costsinrsing [z 0ssintsinrsins [J[3[]1costisinscosr

[1 cosslIcostcosr [lsintsinr(][J[]2[1zcoss[costsinr [1sintcosr (]

[ [10zsinsIcostsinr [Isintcosr1 [ [Jzl]1sinsCIsintsinr [Jcostcosr(]

[1 cosscosIr[Jt [ [alscosssin(r[Jt [ Dslgsinscosr It 01 (1 zsinssinrt"
[lcosqcos p [101002sin pcosq [13001singcos p [102003singsin p

[1 cosscosIr (1t 0 (1[dzsinssinr Ct [ [200scosssinCr (1t [ [Jsl0isinscosr [t
Equating the coefficients of like terms we get

cosqcos p [J cosscosCIr CJtC) ... (3) sin pcosq
dsinssinCr Ot ...l (4) sinqcos p [Isinscos[Ir [Jt[]
.......... (5)

[singsin p CJcosssinCr Ot .......... (6)

Squaring (3) and (6) and adding
[Jcosgcos pOJ? [ Osingsin pO? O Ccosscosr It 12 O cosssinCIr Ot 02
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[Jcos?qcos? pLsin®gsin® pLl cos?s
(J100cos2ql1110cos2pl] [J100cos2ql1110cos2q(] [11[1cos2s(]
J J J

2 2 2 2 2
[J 1010cos2pllcos2q]cos2qcos2p1]cos2q1cos2qlcos2qcos2q ][] [11 " cos2s

4 2
[J 10020 2cos2qcos2pll ; []1 - szt

4 2

[J1[Jcos2qcos2pl11icos2s

[lcos2qcos2plicos2s

[Icosl]coslIcos(]

Let r+t=a andr -t=b

=a+b=2r=[] and a -b=2t=0

Dividing (6) by (3) we get tanptang= -tan(r +t)= -tana tanp
Dividing (4) by (5) =tan(r - t)= tanb tang

tan-=tan(a+b)- tana+tanb

1 -tanatanb tan p

a tan ptanq [——

tang

D -

1000 tan ptanqU OO0 0 tantangp O OO0
0 tan ptan®q [J tan p

[ 10 tan 2 pCitang tan pJ10) tan?q ]

(1 011(0] tan 2 p[itang sin2p sin(]

U J
tan2q tan[]
sin[]
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Utan [

tan(’
tan0J [ tanCpligqOe tanp & @107 tan ptang

tan p

[ tan ptanq [ —
tang
[] I

100000 tan ptang1 1 O 0 tantangp 101 010
J

tan ptanq [ tan p

[ 010 tan 2 pOtang tan pJ10] tan? g

OO0 tan 2 pltang tan2p tan(]

HIN NN

IV.  Discussion

There is a difference in sign of the ‘sine’ function in the conventional matrix method and the one used by us that

is the Spinor method due to the difference in the handedness of the basis. Quaternions form a left handed

coordinate system where as Spinors form a right handed coordinate system.

And also the matrix obtained for a frame rotation is different to that of vector rotation. For example cos(] -sin(]

0 is the matrix used to rotate a vector about (13 through an angle [Jwhereas ' sin-0

sin[] cos[] 0-sin(J cos[10

0 0 10 01 is the matrix used to rotate the coordinate frame about [J3through an angle [J.

Conclusions:

We conclude that Spinor methods can replace the conventional methods and it is better formalism as they can be

converted into any other convenient form as per the available data. When compared to the other methods, the

number of parameters in the Spinor notation R=[J+[1 i reduce further as [Jand [] are not independent of each

other.
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