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 Abstract   
In this paper Spinors of Euclidean spaces of Geometric Algebras over a real field are defined and their algebraic and 

rotational properties are discussed. The advantage of using Spinors in solving problems of Celestial Mechanics is 

illustrated by studying the tracking problem of near Earth objects. It is shown that this technique of using spinors can 

replace the conventional methods and also provide a richer formalism.  

 

Keywords: Euler angles, Geometric Algebra, Euclidean spaces, Rotations, Spinors.  

 

I. Introduction  

 Spinors are defined as a product of two vectors in i-plane or i-space (Hestenes, 1986). Spinors can also be viewed 

as elements of a minimal left ideal (Hestenes, 1966 & Lounesto, 2001). Rotations can be treated as group actions 

of Spinors on the vector space over which the Geometric Algebra is constructed. There are different 

parametrizations for Spinors in Geometric Algebra. Thus rotations also have different parametrizations depending 

upon the form of the Spinor considered.  

 Sequences of rotations play a key role in tracking near earth orbiting objects such as an aero plane or a spacecraft 

(Kuipers, 1999).  There exists a sequence of Spinors corresponding to every sequence of rotations. The purpose 

of the present paper is to compare our results with the results obtained by using Quaternions and to show that 

Geometric Algebra works as an efficient tool to study problems in Celestial Mechanics.  

II. Geometric Algebra  

 Let En be an n-dimensional vector space over R, the field of real numbers,   together with a  

symmetric, positive definite, bilinear form g :En×En→ R   denoted by  g(x, y) x.y ,   ∀x, y∈En . 

There exists a unique Clifford Algebra (C(En), )  which is a universal algebra in which E
n is embedded. 

Henceforth, we shall identify En with (En) . We choose and fix an orthonormal basis Bn e1,e2,....,en   for En .  

Let A0  span e = R1A = R A1  span  {ei} = En 

And in general,       Ak 
  
{
 

ases}  

s k 

Then    C(En)=⊕Ak  

Clearly   dim Ak nCk   and   dimC(En)=2n .  

Geometric Algebra   is constructed by taking the geometric product of the vectors in the n - dimensional vector  
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space En , giving multivectors as its products. The ‘Geometric Product’ of vectors denoted by   ab , as   

  

ab = a . b + a ∧b                       ………….. (1)  

  

ba =b . a +b∧a = a . b -  a∧b    ………….. (2)  

As every element of C(E
n)  is in the form A = A 0⊕ A1⊕ …. ⊕ A n , it is called a multivector.  A multivector is 

said to be even (odd) if   A r =0 whenever r  is odd (even).  A detailed construction was given by  Hasan (1987).  

  k-blade:    Outer product  of ‘k’ number of 1-vectors is called a k- blade.  Note that  

eS 
e
i1

e
i2 .....eim is a  m  - blade.  

Define the setG
n = {±e

S /S⊆N}. Clearly G
n is a group with respect to the operation ‘Geometric Product’ of the 

elements defined by  eS
e
T = (S,T)e

S T  with  inverse of eS and {e } as the identity. Gn  is a ‘free group’ with Bn as 

a finite basis. Gn =
2n+1 .    

2.1   Euclidean nature of Geometric Algebra  

2.1.1    Definition: Norm of a multivector   The concept of ‘norm’ of a multivector is very important to define 

division in Geometric Algebra.   

To every A∈ C(En) the magnitude or modulus of A is defined as  A = A
†

A 
1

2 . 0 

 With this definition of norm, C(En)  becomes a Euclidean algebra. The inverse of a non zero element of A of  

C(En), is also a multivector,  defined by  A 1 = A†
2 .   A 

2.1.2   Definition : k- space     Every k- vector Ak determines a k- space  

2.1.3   Definition:   n – dimensional  Euclidean space  C(En)  : For a n-vector An, designate a unit  n - vector ‘ i ’ 

proportional to An. That is An = An i .    

‘i ’ denotes  the direction of the space represented by An.      

2.1.4    Definition  i- space : The set of all vectors x∈E
n which satisfy the equation x∧i =0 ,  is said to be an i- space 

and is denoted by C
n(i).  Such a  n - vector   ‘i ’  is called the pseudoscalar of the plane as every other n -vector 

can be expressed as a scalar multiple of it.   Note   (a)  x=x
1 1+x

2 2+.....+x n n   is a parametric equation of 

the i- space. x1,
x
2,...,

x
n   are  called the rectangular components  of vector x  with respect to  the basis  { 1, 2,......, n}    

(Hestenes, 1986). (b)  x=x
1 1+x

2 2   is a parametric equation of the i- plane. x1,
x
2   are  called the rectangular 

components  of vector x  with respect to  the basis  { 1, 2}.  

2.2    Spinors in ‘n’  dimensions  

2.2.1   Definition: Spinor    The product of two vectors in the  i- space  is called a Spinor.  

2.2.2   Definition:  Spinor i- space : The Spinor  i- space  ' S ’ is defined as   

Sn={R/ R= x y , x , y ∈i- space }  
S

n = C3+(i)  if n ≤3. ' S2 ’ can be related to complex numbers  and ' S3 ’  can be related to Quaternion Algebra.     

Let x = x1 1+ x2 2+....+ xn n and  y = y1 1+ y2 2+.....+ yn n .    

Then the elements in the Spinor   i- space   ' Sn ’ are in the form   

 n n   ( ) 

R= x y= ∑xj yj + ∑ xj yk - xk yj j k   j=1 j,k=1 
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R  can be written as  + i   if  n = 2 or 3  

Where = ∑n xj y j   and = ∑n (xj yk - xk yj)    j=1

 j,k=1 

    

  
Fig 1:   i- plane  of Spinors  

2.3  Algebraic Properties of Spinors  

2.3.1  Theorem :      Sn = { R/ R = x y , x , y ∈ i- space }    

(i) Sn is an abelian group  with respect to the operation ‘ ’defined as the addition of the coefficients of the 

like terms similar to addition of polynomials.  

(ii) Sn is a vector space over R .  

(iii) dim Sn =2n-1   

Spinor spaces  Sn in  dimensions  n  > 2 do not satisfy commutative property. Hence they form division algebras 

or associative algebras.  

2.4   Euclidean space   C3(i)   

For a trivector A3∈C
3(i), designate a unit trivector ‘i ’ proportional to A3 . That is A3= A3 i .    

‘i ’ represents the direction of the space represented by A3 .      

The set of all vectors x which satisfy the equation x∧i =0 , is called the Euclidean 3- dimensional vector space 

corresponding to ‘i ’ and is denoted by  ‘C3(i)’.    

C3(i)   can  also be called an  i- space,  the trivector i  is called the pseudoscalar of the space as every other 

pseudoscalar is a scalar multiple of it.  

  x=x1 1+x2 2+x3 3   is a parametric equation of the i- spacewhere x1,
x
2 and x3 are  called the  

rectangular components  of vector x with respect to  the basis { 1, 2, 3}.  i- space of vectors 

is a 3 – dimensional vector space with basis { 1, 2, 3}.  

2.4.1   Definition :  bivectors in C3(i) :          i1= 1i = 2 3;  i2= 2i= 3 1;  i3= 3i= 1 2. The set of bivectors 

in C3(i) is a 3-dimensional vector space with basis {i1,i2,i3}.   

2.4.2   Spinors of Euclidean space  C3(i)  

2.4.3    Definition: Spinor  i- space    The Spinor i- space  'S3’ is defined as   

     

S3= {R/ R = x y, x, y∈i - space } 
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S
3  can also be denoted by C3

+(E) or C3
+(i).   ‘ R∈Sn ’ is a multivector, has a scalar part   

‘ ’ and a bivector part ‘ i1+ i2 + i3’.  

TABLE 1:  Comparison  between Spinors of Euclidean plane and Spinors of Euclidean space 

  
2.5   Action of Spinors on Euclidean space, Rotations   

 Spinors of Euclidean space also can be treated as rotation operators on i - space of vectors that is the three 

dimensional vector space E3 .     

 Unlike rotations in two dimensions, rotations in three dimensions are more complex as (i) the operation to be 

considered is the group action by conjugation, giving Similarity Transformations.   

(ii) The axis about which the rotation takes place is also to be specified. The resulting vector changes as the axis 

of rotation changes. This can be shown in the following examples.  

  Rotate the vector x  about the axis 1, the axis perpendicular to the plane represented by the bivector   i1= 1i 

= 2 3 .   

Let x ∈ i - space of vectors   and   x = x1 1+ x2 2+ x3 3 .  

i1
†x i1= 3 2x 2 3= 3 2(x1 1+x2 2+x3 3) 2 3=x1 1 - (x2 2+x3 3)  

  Rotate the vector x  about the axis 2, the axis perpendicular to the plane represented by the bivector   

i2= 2i= 3 1.   

i2
†x i2= 1 3 1x 3 1= 1 3(x1 1+x2 2+x3 3) 3 1=x2 2 - (x1 1+x3 3).  

2.6    Diferent parametrizations for Spinors of C3(i)  

2.6.1   Spinors of the i- space  in half angle form  

 A  unit bivector is treated as a representation of the direction of an area.  It can also be treated as a  

representation of an angle, which is a relation between two directions. Hence for x, y∈C3(i), let  xˆ, yˆ be 

their directions which are elements of the  i - space. From the definition of a Spinor of the i - space, the Spinor,  

R=xˆ yˆ =xˆ . yˆ +xˆ∧yˆ .  

= cos A + A 

1 ˆ sin 1   A is the half angle form of the Spinor R .  

2 2 

2.6.2   Spinors of the i - space  in exponential  form  

1 ˆ sin 1   A        can be written as  e
(1/2)A .  
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R =cos A + A 

2 2 

Here Aˆ =xˆ∧yˆ , the bivector representing the plane of rotation and A gives the magnitude of the angle through 

which the rotation takes place.  

2.6.3  Quaternion form  

R= xˆ yˆ = + 1 2 3+ 2 3 1+ 3 1 2  

= + 1i1+ 2i2+ 3i3= + i  

Where  =xˆ . yˆ and  = 1 2 3+ 2 3 1+ 3 1 2= xˆ∧yˆ  

It is the Quaternion form of a Spinor.  

A  A 

The relations between various parameters are,  = cos ,     =Aˆ sin   

2 2 

2.6.4    Euler Angle and axis form       

   

R=e(1/2) i a   is the angle and axis form of the Spinor as  aˆ is the axis of rotation and  a  gives the magnitude of the 

angle through which the given vector is rotated. This is called Euler parameterization of rotations. The parameters 

angle and axis are called Euler parameters.  

 2.6.5   Spinor Matrix form of a rotation   

We denote a rotation by R or Q and rotation through an angle   by R  or Q . The use of Spinors to represent a 

rotation gives the matrix elements directly by the formula   ejk = j . ek = j.(R k). The advantages in using 

Spinors as a substitute for all the other forms for representing rotations  are (i) Spinors are coordinate free.  

(ii) Spinors exists in every dimension, thus make it possible to perform rotations in higher dimensional spaces 

also.  

(iii) Spinors represent the orientation of the rotation but matrices do not.   

(iv) It is easy to convert Spinors into the other forms as and when required.  

2.7  Sequences of Spinors  

 Sequence or product of Spinors is also Spinor and hence a rotation. Spinors  play an important role in the study 

of the problems related to Celestial mechanics. 2.7.1         1-2-1 symmetric sequence of rotation  

We consider the 1-2-1 symmetric sequence of rotations; the Spinor that represents the required rotation is given 

as a sequence of three spinors about the base vectors is defined by  

R =R Q R =R †Q † R † kR Q R  ,  

Where R =e(1/2) i 1 = cos 2 + 2 3sin 2   , Q =e(1/2) i 2 =cos 2 + 3 1sin 2 ,  

R =e(1/2) i 1 = cos 2 + 2 3sin 2   

The new set of axes after rotation are given by ek =R k =R† kR  

† † † 

= R Q R kR Q R   

This can be converted into the matrix form by calculating the elements of the matrix (ejk) given as   
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ejk = j . ek =R k   

† † † e1=R 1= 

R Q R 1R Q R   

=R †Q † (R † 1R )Q R   

=R † (Q † 1Q )R   

= R † [ 1(cos + 3 1sin )]R   

= R † [ 1cos - 3sin ]R   

=(R † 1R )cos - (R † 3R )sin   

= 1cos - 3(cos + 2 3sin )sin    

= 1cos + 2sin sin -  3sin cos   

† † † 

Similarly  e2=R 2= R Q R 2R Q R   

= 1(sin sin )+ 2(cos cos - sin cos sin )+ 3(sin cos +cos cos sin ) 

† † † e3=R 3=R Q R 3R Q R   

= 1sin cos + 2( -sin cos cos -cos sin )+ 3(cos cos cos - sin sin ) cos (sin sin ) 

(sin cos ) 

sin sin (cos cos -sin cos sin ) (-sin cos cos -cos sin ) 

-sin cos (sin cos +cos cos sin ) (cos cos cos - sin sin ) 

III.  An application of sequences of spinors  

3.1   Tracking problem  

Rotation sequences are used to track a remote object such as a spacecraft or an aero plane.  

  
Fig 2 Tracking Problem  

 In the figure 3, OXYZ is the frame of reference rigidly attached to the Earth. The origin ‘O’ is a point on Earth 

from which we are observing the spacecraft.  

 XY plane is the Tangent plane to the Earth pointing towards North and East directions respectively. Z axis points 

towards the centre of the Earth (NED frame of reference). ‘A’ indicates the direction of the spacecraft and ‘P’ is 

the projection of A in XY plane.  is the angle between the projection of the position vector of the spacecraft and 

the X axis.  

 is the angle between the projection of the position vector of the spacecraft and the position vector of the  

Spacecraft.  is called the ‘Heading angle’ and  is called the ‘Elevation angle’    To locate the spacecraft we 

use R R  sequence of coordinate frame transformations where R rotates the XY plane through an angle  about 
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Z axis in such a way that the X axis coincides with the projection vector OP, and R  rotates the XZ plane through 

an angle  about new y axis in such a way that  

The newest ‘x’ axis coincides with the direction vector OA. The final direction of the X axis represents the 

direction of the spacecraft.  

R =R R   

3.2  Spinor Matrix form of the Tracking Transformation  

The new set of axes after rotation are given by  

† † 

ek =R k =R R σk = R R kR R   

Where R =e(1/2) i 3 = cos 2 + 1 2sin 2   , R =e(1/2) i 2 =cos 2 + 3 1sin 2  

This can be converted into the matrix form by calculating the elements of the matrix (ejk) given as   

ejk = j . ek =R k   

Let the final set of coordinate axes be  {ek,k=1,2,3}. e1=Rσ1=R R σ1  

=R  σ1(cos + 1 2sin )  

=R (σ1cos + 2sin )  

=σ2 cos - 1(cos +σ3σ1sin )sin   

σ1 cos σ3σ1sin cos 2 sin   

σ1cos cos 2 sin σ3 cos sin   

Similarly  

e2 Rσ2 R R σ 2  

= - σ1sin cos + 2 cos +σ3sin sin   

                                              e3=R 3=R R 3  

= 3cos + 1sin   

Hence the corresponding matrix for the tracking transformation is cos cos -

sin cos sin   

sin  cos  o 

-cos sin sin sin cos  

 3.3      Euler angles  

  Rotations transform one coordinate frame XYZ into another coordinate frame xyz preserving the angle between 

them. Hence it preserves the orthogonality property of the basis vectors. There is another widely used system to 

represent rotations is the system of Euler angles. Euler stated that every rotation can be expressed as a product of 

two or three rotations about fixed axes of a standard basis in such a way that no two successive rotations have the 

same axis of rotation. This theorem is known as ‘Euler’s theorem’. Thus every rotation can be divided further 

into two or three rotations about the fixed axes of the standard basis.  

3.4      Theorem     Every rotation can be expressed as a sequence of Euler angles.  

Proof:    We shall prove this by establishing the relation between spinor sequence of Euler angles and the angles 

of any arbitrary spinor sequence that represent the same rotation. As an example for an arbitrary rotation, let us 
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choose the symmetric 1-2-1 sequence of Euler angles obtained above. Equating the matrix representations of both 

we get the Euler angles in terms of   and .  

R R =R Q R   

cos  (sin sin ) (sin cos ) 

-sin cos (sin cos +cos cos sin ) (cos cos cos - sin sin ) cos cos  -

sin cos sin  

sin  cos  o  

-cos sin sin sin cos cos =cos cos   

tan tan =   

sin  

sin  

tan = -   

tan  

These relations establish the existence of Euler angles and these relations can also be obtained using other methods 

also. We shall prove this by using Spinor half angle method.  

3.5   Spinor half angle method  

 

R R =R Q R ⇒ Let p = 2 ,q = 
2 ,r = 2 ,s = 2 ,t = 2 to avoid half angles  

(cosq+ 2 3sinq) (cos p+ 1 2sin p)=(cost+ 2 3sint) (coss+ 3 1sins) (cosr+ 2 3sinr)  

∴cosqcosp+ 1 2sin pcosq+ 3 1sinqcosp - 2 3sinqsin p  

cost 2 3 sint cosscosr 2 3 cosssinr 3 1sinscosr 1 2 sinrsins   

costcosscosr 2 3costcosssinr 3 cost1sinscosr 1 2costsinrsins 

2 3sintcosscosr sintcosssinr 2 1sintsinscosr 3 1sintsinrsins  

costcosscosr sintcosssinr 2 3costcosssinr 2 3sintcosscosr 

2 1sintsinscosr 1 2costsinrsins 3 1sintsinrsins 3 1cost1sinscosr 

coss costcosr sintsinr 2 3coss costsinr sintcosr  

1 2sins costsinr sintcosr 3 1sins sintsinr costcosr   

cosscos r t 2 3cosssin r t 3 1sinscos r t 1 2sinssin r t   

cosqcos p 1 2sin pcosq 3 1sinqcos p 2 3sinqsin p 

cosscos r t 1 2sinssin r t 2 3cosssin r t 3 1sinscos r t   

Equating the coefficients of like terms we get    

cosqcos p cosscos r t       ……….  (3) sin pcosq 

sinssin r t         ………. (4) sinqcos p sinscos r t       

……….(5)  

sinqsin p cosssin r t      ……….(6)  

Squaring (3) and (6) and adding    

cosqcos p 2 sinqsin p 2 cosscos r t 2 cosssin r t 2
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cos2qcos2 p sin2qsin2 p cos2s  

1 cos2q 1 cos2p  1 cos2q 1 cos2q  1 cos2s  

   

 
2 2 2 2 2   

1 1 cos2p cos2q cos2qcos2p 1 cos2q cos2q cos2qcos2q 1 cos2s  

 

 
4 2 

1 2 2cos2qcos2p 1 cos2s  

 

 
4 2   

1 cos2qcos2p 1 cos2s  

cos2qcos2p cos2s  

cos cos cos   

Let  r+t =a  and r - t =b  

⇒a+b=2r =   and   a - b= 2t =   

Dividing (6) by (3)  we get  tanptanq= -tan(r +t)= -tana  tanp 

Dividing (4) by (5)    = tan(r - t)= tanb tanq 

 
tan = tan(a+b)= tana+tanb  

 
1 -tanatanb tan p 

 tan ptanq  

tanq 

 

1 tan ptanq tantanqp   

 tan ptan2 q tan p 

 
1 tan 2 p tanq tan p 1 tan2q  

 
1 tan 2 p tanq sin2p sin  

  

 
tan2q tan   

sin  
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tan  

 
tan   

tan tan p q tan p tanq 1 tan ptanq  

 
tan p 

tan ptanq  

tanq 

 

1 tan ptanq tantanqp   

 

tan ptan2q tan p 

 
1 tan 2 p tanq tan p 1 tan2 q  

 
1 tan 2 p tanq tan2p tan  

  

IV.  Discussion  

 There is a difference in sign of the ‘sine’ function in the conventional matrix method and the one used by us that 

is the Spinor method due to the difference in the handedness of the basis. Quaternions form a left handed 

coordinate system where as Spinors form a right handed coordinate system.  

 And also the matrix obtained for a frame rotation is different to that of vector rotation. For example   cos -sin

0  is the matrix used to rotate a vector about 3 through an angle whereas  cos sin 0   

sin cos 0-sin cos 0 

0 0 10 01 is the matrix used to rotate the coordinate frame about 3 through an angle .   

Conclusions:  

 We conclude that Spinor methods can replace the conventional methods and it is better formalism as they can be 

converted into any other convenient form as per the available data. When compared to the other methods, the 

number of parameters in the Spinor notation R= + i reduce further as and  are not independent of each 

other.  
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