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 Abstract:  
The application of artificial intelligence (AI) methods to grid analysis has been extensively studied. The 
distribution characteristics of the power flow dataset required for the training of AI methods will affect 
the performance of AI models. The power flow data accumulated for offline analysis are manually 
adjusted limit operation mode and distributed at the grid operation boundary, so the power flow 
dataset for offline analysis has good distribution characteristics. However, its small number and low 
manual generation efficiency make it difficult to exploit the advantages of this distributed characteristic 
dataset. In this paper, a power flow dataset sample supplementation method based on Wasserstein-
gradient flow is proposed to realize the adjustment of the power flow dataset considering the 
distribution characteristics by solving the dynamic process of the dataset for Wasserstein-gradient 
flow. It is also tested on the CEPRI-36 node grid power flow dataset, and the generated supplemental 
data all have similar distribution characteristics with the target dataset, which verifies the effectiveness 
of the method. 
  
Keywords: power flow dataset; optimal transport; wasserstein-gradient flow. 
 

 

1. Introduction   

AI methods applied to power grid analysis require training of power flow datasets. The existing sources of 

power flow data are mainly generated by offline simulation and online data collection, but both the online 

and offline power flow datasets accumulated in the past cannot directly meet the requirements. The power 

flow data for online analysis is the actual operation mode collected, which constitutes a large amount of 

sample data, but the distribution is not uniform and there are many similar samples, which cannot meet 

the requirements of covering comprehensively and clear boundary; the power flow data for offline analysis 

is the extreme operation mode manually adjusted, which constitutes a strong sample typicality and is 

distributed at the stable boundary of the grid operation, which helps to achieve the requirement of clear 

boundary, but the data volume is small and it is difficult to cover all the typical working conditions of the 

grid operation, which cannot meet the requirement of covering comprehensively. If the dataset is 

supplemented by targeting the distribution characteristics of the data for offline analysis, the obtained 

dataset will satisfy the two requirements mentioned above. Since the research on data set adjustment 

methods considering distribution characteristics is relatively weak, it is difficult to take full advantage of 

the distribution characteristics of the data for offline analysis.  

Optimal transport theory is the study of the relationship between distributions and distributions. Gradient 

flow based on optimal transport theory is an important tool in applied mathematics for constructing 
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dynamic models in feature spaces [1], gradient flow has been extensively studied in the context of metric 

spaces [2] and has been found to be deeply related to partial differential equations (PDEs)  

In view of this, we study a power flow dataset supplementation method considering the distribution 

characteristics, which transforms the power flow dataset data into Wasserstein space in the form of 

distribution, then transforms the power flow dataset adjustment problem into the problem of solving the 

extreme value of the energy functional by constructing the functional, then solves the curve evolution 

equation by using the variational method, and finally solves the evolution equation to obtain a set of power 

flow dataset series labeled by process time. This paper is organized as follows: Section 2 presents the 

relevant technical background, including optimal transmission theory and gradient flow; Section 3 

introduces the Wasserstein-gradient flow based power flow dataset supplementation method. Section 4 

verifies the effectiveness of the method by testing it in the power flow dataset of the CEPRI 36 node power 

grid model.  

2. Technical Background  

2.1. Optimal Transport and the Optimal Transport Dataset Distance  

Optimal transport theory is the study of the problem of interconversion between distributions, where the 

optimal transport distance (also known as the Wasserstein distance) is a quantitative tool to describe the 

degree of variation between distributions. For two 

subsets of measures  and the transport cost 

function  

where  and  are features from the samples in the two 

measures, and  is the set of transport schemes between  and , i.e., the coupling with these two 

measures as marginal measures:  

Where for p ≥ 1, is called the p-Wasserstein distance. As the name suggests,  defines a true distance on  [4]. 

Thus, with the former as the distance configuration is the metric space , called the (p-)Wasserstein space. 

In practice, the solution method is often solved by a regularized version of Eq. (1) with an additional 

entropy term  

 [5].  

 

 

In the  literature [6] it was demonstrated that there is also a dynamic formula for OT:   

                                          (4)   

where   minimum  from  taken  is  the  the  measure - domain  pair  satisfying    and  the  

continuity equation:   

, the optimal transport problem is   
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                               (5)  

This formulation corresponds to finding the shortest path satisfying the conservation of the mass 

constraint in the metric path  from  to  and the velocity field  , even if the path length is the smallest 

(formally the integral of the metric derivative). Thus, in contrast to the global correspondence  

(via ) in the static formulation (Eq. (1)), the dynamic formulation focuses on the local transport (via  

).  

It is appealing to use OT to define a distance between datasets, but this is non-trivial for labeled datasets. 

The main issue is that problem (1) would require an elementwise metric  , which for labeled datasets 

means defining a distance between pairs of feature-label pairs. For the general case where  might be a 

discrete set (i.e., classification), this seems daunting. In recent work, researchers [7] propose a hybrid metric 

on this joint space that relies on representing the labels  as distributions over features  . E.g., for a digit 

classification dataset,  would be a distribution over images with label .  

With this, they define a metric on  as . Using  as the ground cost in eq. (1) yields a distance between 

measures on , and therefore between datasets, which they refer to as the Optimal Transport Dataset 

Distance (OTDD):  

 .            (6) 

The main appeal of this distance is that it is defined even if the label sets of the two data sets are 

nonoverlapping, or if there is no explicit known correspondence between them (e.g., digits to letters). It 

achieves this through a purely geometric treatment of features and labels. Another advantage is its 

computational scalability, which relies on using a Gaussian approximation on the per-label distributions, 

i.e., modeling each  as , whose mean and covariance are estimated from samples. In that case, the distances  

can be computed in closed form, so no optimization is needed to evaluate  inside problem (6).  

2.2. Grandient Flows  

Consider a functional  and a point . A gradient flow is an absolutely continuous curve  that evolves 

from  in the direction of steepest descent of . When  is Hilbertian and  is sufficiently smooth, its gradient 

flow can be succinctly expressed as the solution of a differential equation  with initial condition . Different 

discretizations of this equation yield popular gradient descent schemes, such as momentum and 

acceleration [8]   

3. Wasserstein-Gradient Flow Based Sample Replenishment Method for Power Flow 

Datasets  

The power flow dataset data are transformed into Wasserstein space, and then the power flow dataset 

adjustment problem is transformed into the problem of solving the extreme value of the energy 

generalization function by constructing the energy generalization function, and then the curve evolution 

equation is obtained by using the variational method, and finally the evolution equation is solved to obtain 

a set of power flow dataset series labeled by process time. The distribution difference between this serial 
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dataset and the target distribution dataset gradually decreases with the increment of the time principal 

scale, and finally an adjusted dataset with controllable distribution difference is obtained.  

The main problem that needs to be solved for a specific implementation is how to choose the objective 

functional.  

3.1. Functional Minimization via Gradient Flows  

Given a dataset objective expressed as a functional  , we seek a joint measure  realizing:  

                                (7)  

We propose to approach this problem via gradient flows, i.e., by moving along a curve of steepest descent 

starting at  until reaching a solution . Unlike Euclidean settings, here the underlying space  is infinite-

dimensional and non-Hilbertian, thus requiring stronger tools.  

First, the notion of derivative can be extended to functionals on measures through the first variation,  

 
which can also be seen as a continuity equation (4) for the measure  and the velocity field  

 .  

Our main functional of interest will be the Wasserstein distance to a target distribution:  

 , which we realize using the OTDD (Section 2.1).   

Hence, we assume the objective of interest can be cast as:  

  
The numerical solution of the functional can be found in the literature [9].  

4. Experimental Validation  

4.1. Example Introduction  

The samples in the power flow dataset of this paper describe various modes of operation of the grid model 

CEPRI36, and the grid structure is shown in Figure 1, where some nodes are connected to capacitors or 

reactors that are not involved in regulation, and there are 18 nodes of generating units or loads involved 

in regulation, with the nodes injecting power as the input feature values, for a total of 36 variables, i.e., the 

sample contains a feature dimension of 36 dimensions.  

  :   

denoted by  .  With this,  we characterize the gradient flow    of    as the solution of:   

                                          (8)   
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Figure 1: CEPRI36 grid model topology connection diagram  

For sample supplementation of the target distribution dataset using a Wasserstein gradient flow method. 

Among them, the target distribution dataset uses 5000 manually generated samples with distribution 

characteristics similar to those of the power flow dataset for offline analysis, whose samples are mainly 

distributed near the stability boundary. The initial dataset for the sample adjustment generation process 

is chosen from the randomly generated dataset.  

For this purpose, the experimental design is as follows 

The original random dataset is denoted as , the target distribution dataset is denoted as  , and then four 

randomly generated data sets are denoted as , where i=1,2,3,4.  

(1) Using the four data sets  as the initial data set and  as the target data set, a gradient flow 

operation is performed to select the appropriate four data sets according to OTDD, denoted as  , where 

i=1,2,3,4, and there is a correspondence with i in  .  

(3) The generated new datasets are then merged into the original dataset separately to form two datasets 

with increasing sample capacity and maintaining the original distribution characteristics, denoted as  and 

, where i=1,2,3,4 and have correspondence with i in  . The formation can be expressed as follows:  

It should be noted that the "+" operator here does not indicate the operation of a set, but the direct merging 

of data sets. The sample sizes of , , , and  are 10,000, 15,000, 20,000, and 25,000, respectively. Similarly, the 

data set sequence  also has the same sample size. The  is the data set of the target distribution after 

supplementation.  

The experimental hardware environment is 3.30 GHz, the CPU is AMD Ryzen9 5900HS, and the GPU is RTX-

3060. in the Wasserstein gradient descent flow procedure in part 1 of the experiment, the optimal 

transmission distance of the power flow dataset is computed with the help of solvers for the optimal 

transmission distance provided by the geomloss [10] and POT [11] libraries, and the above Both libraries have 

the option of CUDA acceleration, which accelerates the solution of the Wasserstein distance using GPU 

parallel computing. One of them is the Compute Unified Device Architecture (CUDA), a computing platform 

introduced by NVIDIA, a graphics card manufacturer.  
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4.2. Results and Discussion  

The effect of the power flow dataset supplementation method is analyzed using the optimal transport 

distance calculation method for power flow datasets given in Section 2.1. Comparing the distribution 

differences between the four randomly sampled datasets  used as initial values and the four target 

distribution datasets  generated by the method in this paper, the  between the two datasets is found, where  

takes the value of the 1st column and  takes the value of the 1st row, the result is shown in Table 1 and 

Table 2 as follows:  

Table 1:  values between  

          

  
0  1.59  1.57  1.93  

  
1.59  0  1.76  1.48  

  
1.57  1.76  0  1.61  

  
1.93  1.48  1.61  0.  

Table 2:  values between   

          

  
0  0.58  0.64  0.63  

  
0.58  0  0.67  0.66  

  
0.64  0.67  0  0.78  

  
0.63  0.66  0.78  0.  

Where  is also at the same level as,  and  with  . Based on the above results, it can be seen that:  

It is logical that the between the initial randomly sampled distributed datasets of the motion is larger than 

the between the generated datasets, whose distribution properties dictate that the samples will appear 

randomly in a smaller range. This is also a side verification that the Wasserstein gradient flow method 

generates indeed datasets with the target distribution.  

(1) The values of  between two  are at the same order of magnitude level, and there are no 

values that are significantly smaller than others and converge to zero. This phenomenon reflects the 

significance of initial dataset selection in Wasserstein gradient flow, setting different initial datasets, and 

the datasets of the final generated target distribution will not be exactly the same, still maintaining the 

same distribution but the data are not duplicated. 
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5. Conclusions  

In order to take full advantage of the distribution characteristics of the power flow data for offline analysis 
and adjust the dataset flexibly and efficiently, this paper investigates the method of adjusting the power 
flow dataset considering the distribution characteristics. The Wasserstein gradient flow-based sample 
supplementation method for power flow datasets is proposed to convert the dataset generation.  
Process into a generalized optimization problem of finding extrema, and our goal is to obtain the complete 

motion trajectory of the dataset under the gradient flow. The motion trajectory can provide a sequence of 

datasets with progressively decreasing variance from the target dataset distribution, in which we can select 

the datasets with the appropriate degree of variance to add to the original data set as needed, where the 

initial value of the evolution equation also has an important influence on this process. This operation also 

enables a sample supplementation method that maintains the distribution properties, i.e., the 

supplemented samples still maintain the same or similar distribution properties but are not simple 

duplicates of the data in the original dataset. Finally, the effectiveness of the Wasserstein gradient flow 

method is verified by experimental examples.  
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