
Ethan Cancer Research Journal 
Volume 1 Issue 1 February 2024 

ISSN: Pending… 

 

23 | P a g e  

THE DIVERSE IMPACT OF VITAMIN D ON CHRONIC AILMENTS 
 

 

A. Ndlovu, and T. Dube 
Department of Medical Pathology, University of Cape Town, Cape Town, South Africa 

 

Abstract: The beneficial effects of vitamin D in humans are numerous and various, and include neuronal, immune 

and bone homeostasis, and regulation of cardiovascular function. Recent studies have related vitamin D levels to 

cancer cell proliferation, but meta‐analyses on this subject have provided controversial results. This review deals 

with the antioxidant and anti‐inflammatory function of Vitamin D in chronic diseases, focusing mainly on cancer, 

immune diseases, and cardiomyopathies. Vitamin D contributes significantly to reducing pro‐oxidant biomarkers, 

both systemic and in specific tissues, involved in the development, progression, and recurrence of cancer, chronic 

and cardiometabolic diseases. The overall picture provided by this work highlights the need for new randomised 

controlled trials on oral Vitamin D supplementation in patients affected by cancer, or neurological and 

cardiovascular disorders, with the purpose of lowering risk factors for relapse of these diseases and improving 

patients' quality of life. 
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INTRODUCTION 
Vitamin D (Vit D) is part of the group of fat-soluble vitamins. Several forms are known, but the most important 

for our organism are ergocalciferol (Vit D2) and cholecalciferol (Vit D3) (Figures 1-2). Both forms are used to 

treat and/or prevent rickets 1. Vitamin D is sourced from various types of food. Apart from certain types of foods 

(especially fatty fish), the amount of Vitamin D in food is not very high 2. Other examples of sources are egg yolk 

(Vit D3), mushrooms (Vit D2), cereal and dairy products3. Concerning the synthesis of Vitamin D3, ultraviolet 

(UV) rays have a very important role. 7-dehydrocholesterol (7-DHC), or Pro‐Vit D, is transformed to Vit D, 

thanks to the action of ultraviolet rays in the spectral range of 290320 nm UVB, in a thermosensitive way 4, 

usually in dermis or epidermis5. Vit D is carried to the liver. Here the enzyme 25-hydroxylase leads to the synthesis 

of 25-OH Vit D. Then, in the kidneys, it is hydroxylated again by the action of the 1‐hydroxylase, obtaining 1,25‐

dihydroxycholecalciferol (calcitriol) and 1,25‐dihydroxyergocalciferol, both addressed with the abbreviation 

1,25(OH)2D 6. The rate of Vit D3 formation varies with UVB power and the color of the skin 7 because clothes, 

use of sunscreens and melanin can block UVB activity on the skin, leading to a lower production of Vit D. It acts 

not only as a vitamin, but also as a hormone, binding intracellular receptors, mostly situated in osteocytes and 

intestinal epithelial  
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Figure 1. Synthesis of ergocalciferol (Vitamin D2) and cholecalciferol (Vitamin D3). Ergocalciferol is produced 

only in plants and fungi, while cholecalciferol in basal cells of the epidermis. Both processes occur via two steps, 

the former induced by the UV light radiation from sun, the latter in a heat‐dependent process. 

cells, but also in other tissues, like adipose, muscular and brain, or hematopoietic cells and hair follicles 8. After 

the bound with its nuclear receptors, 1,25(OH)2D enters the nucleus, where a DNA interaction leads to gene 

expression modulation and calcium‐uptake increase. Calcium assimilation and bone reabsorption represent two 

of the most relevant function of Vitamin D, even if other medical implications are not fully characterized yet 9,10, 

especially in numerous human pathologies, like cancer, infections, osteoarticular and cardiovascular diseases 11. 

Standard doses of Vitamin D are usually well tolerated and do not cause significant adverse effects (AEs), while 

high doses could be toxic, leading to many signs and symptoms 12. Therefore, clinical studies, especially in 

oncological patients are necessary to obtain significant data about the therapeutic aspects of Vit D 13. 

MATERIALS AND METHODS  
A systematic research of EMBASE and Medline databases was conducted in order to find all relevant English-

language papers on the health effects of vitamin D in human being. Full English-language texts with accessible 

abstracts and at least one of the following features were considered: clinical or preclinical studies about the 

importance of Vitamin D in immune system; cancer; cardiovascular diseases; pharmacological processes. Boolean 

operators AND/OR were used to combine search terms. The following strings were used in PubMed: “Vitamin D 

OR Vit D AND cancer” OR “Vitamin D OR Vit D AND cardiovascular” OR “Vitamin D OR Vit D AND immune 

system”. Concomitant research was executed on the Clinical Trial Register. A Preferred Reporting Items for 

Systematic Reviews and Meta‐analyses (PRISMA) flow diagram 10, accessed, was created in September 2022 to 

summarize the systematic review process. The databases were last updated on 30 September 2023. Reports of the 

systematic review were performed in accordance with the PRISMA guidelines and are presented in Figure 3 11. 
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sized in the skin or can be provided through supplements. Once absorbed, it is converted in the liver into 25(OH)D 

and then in the kidney into the active 1,25(OH)2D. Through the circulation, it is brought to the target organs 

possessing VDR. 

METABOLISM OF VITAMIN D 
Many cytochrome P450 oxidases (CYPs) enzymes have a role in the metabolism of Vit D. For example: CYP2R1, 

CYP24A1, CYP27B1, and CYP27A1 (in the mitochondria). They can manage Vit D metabolism through three 

main reactions: 25‐hydroxylation, 1α‐ hydroxylation, and 24‐hydroxylation. Vit D formation mainly occurs in the 

liver, and studies on liver 25‐hydroxlase showed that its activity is greater in microsomes and mitochondria. 

Published data have shown that some CYPs have a similar activity to 25-hydroxylase 14. For example, CYP27A1 

is well distributed, and it is contemplated that it is the only mitochondrial hydroxylase with a 25‐hydroxlase‐like 

function. Nevertheless, it cannot form 25hydroxylate Vit D2. Another one with 25‐hydroxlase‐like activity is 

CYP2R1, founded in mouse livers 15. This one can 25‐hydroxylate Vit D3 and Vit D2 (Figure 2). Other enzymes 

Figure 2.  Metabolism of Vitamin D. Vitamin D3 is present in dietary sources, while Vitamin D2 is synthe  
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that have a relevant action in Vit D metabolism are 3‐epimerase enzymes, because they can inactivate the main 

Vit D metabolites. They can convert 25(OH)D3 to 3‐epi‐25(OH)D3 in the liver. Moreover, CYP27B1 transform 

25(OH)D3  

 
and 3‐epi‐25(OH)D3 to 1α,25(OH)2D3 in the kidneys (Figure 4). The epimeric forms 3‐Epi‐25(OH)D3 and 3‐

Epi‐1α,25(OH)2D3 show low affinity with Vitamin D binding proteins (DBPs) and VDR. In human colon cancer 

cells, this conformational change causes a decreased calcium transport and a decreased gene expression 16,17. 

Another important enzyme in Vit D metabolism is CYP11A1, that hydroxylate Vit D3 and Vit D2, producing 

new metabolites: 20,22(OH)2D3 or 

20,22(OH)2D2, and 20OHD3 or 20OHD2. The 

concentrations of 20,22(OH)2D3 and 

22(OH)D3 are high in keratinocytes, suggesting 

that UVB exposure may activate CYP11A1 18-

21. 

Figure 4. Vitamin D catabolism. Vitamin D is 

metabolized first to 25 hydroxyvitamin D 

(25(OH)D), then to 1,25-dihydroxyvitamin D 

(1,25(OH)2D). CYP27B1 is the key 1-

hydroxylase. Both 25(OH) D and 1,25(OH)2D 

are catabolized by CYP24A1. Once inactive, 

1,24,25(OH)3D is then converted in calcitroic 

acid and secreted as bile into intestine.  

VITAMIN D EFFECTS: FROM 

ANTIOXIDANT TO GENOMIC EFFECTS 
Vit D action can be described in genomic and 

non‐genomic terms. The genomic mechanism 

was studied by Pike et al 22 and Haussler et al 23. 

An important role is played by the Vit D 

receptor (VDR), encoded by the VDR gene. It is 

a member of the nuclear hormone receptors. 

Figure 3.  PRISMA diagram.  The databases were last accessed on September 2023.  
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VDR is composed by three main domains: I) a DNA‐binding domain that with its two zinc fingers binds vitamin 

D response element (VDRE); II) a C‐ terminal ligand‐binding domain; III) a connection region between these two 

domains 24. VDR forms heterodimers with retinoid X receptor (RXR), binds to specific VDREs that is located 

near the target gene promoters, and mediates the recruitment of a huge number of coregulatory complexes that 

have an essential role in the level of expression of the target gene 25. The features of VDR/RXR complex are: I) 

the number of binding sites for VDR depends on the cell type; II) this ligand-receptor complex is the most relevant 

active transcription unit, but it is not the only one; III) the VDR binding sites are for the most classical hexamer 

half‐sites; IV) the enhancers of the gene encoding for VDR can be located proximally or distally, and several 

enhancers are grouped in clusters situated hundreds of kilobases ahead; V) Enhancers have different binding sites 

for each transcription factors; VI) these enhancers are dynamic and cell‐type‐specific. Vit D also shows non‐

genomic effect on different types of cells, through a membrane receptor. One of these kinds of effects is the 

increasing of calcium and phosphate reuptake from the intestine. This process is named transcalcification 26, term 

coined to express the fast onset of calcium movement through the intestine in Vit D‐fortified chicken nourished 

with 1,25(OH)2D 26. Vit D also regulates the activity of chloride channel, the activation and distribution of protein 

kinase C, and the activity of phospholipase C in various cellular types, including osteoblasts, liver, and intestinal 

cells 27-31. It also stimulates the reabsorption of phosphate in renal tubules and promotes the input of calcium from 

the bones into the blood. Another effect consists in the decreasing in pro‐oxidative substances and lipid 

peroxidation 30; for example, in patients affected by diabetes, Vit D could reduce the levels of glucose‐related 

pro‐inflammatory proteins and 4‐hydroxinonenal, a marker of lipid‐peroxidation 31. Another key role of this 

molecules in the homeostasis of neuronal functions. Recent meta‐analyses correlated 25(OH)D low blood levels 

with a significant risk of cognitive decline, memory decline and with progression of Parkinson’s disease 32-34. A 

meta‐analysis on Vitamin D3 and neurodegenerative disorders states that improving Vitamin D levels at 75 nmol/l 

may improve cognitive functions, neuron survival and bone health 35. 

DRUG INTERACTIONS  
The interaction between drugs and Vit D are numerous because of the host genetic variations in the CYP and 

VDR genes 36,37. Pharmacological effects of Vitamin D equivalents can be reduced by their association with drugs 

that induces the CYP450, such as rifampicin, barbiturates, and some anticonvulsants (e.g., oxcarbazepine) 38. 

These agents could activate the conversion of Vit D in its inactive metabolites, and the reducing of blood levels 

of Vit D, together with an increase of production of parathyroid hormone (PTH). Patients assuming long‐term 

anticonvulsant therapy could sporadically develop osteomalacia 39. Some patients also showed a poor response to 

Vit D analogues while treated with phenytoin and/ or primidone 40. Examples of the most important interactions 

are provided in Table 1. 

GENETIC FACTORS INFLUENCING VITAMIN D HOMEOSTASIS AND METABOLISM 
DBPs transport Vitamin D and its products to the liver. The main actor of Vit D metabolism is CYP2R1, although 

several CYPs participate too 15,18. Therefore, polymorphisms in genes encoding these enzymes can have an impact 

on Vitamin D metabolism, but it is not easy to find a significant relation between CYPs polymorphisms and blood 

levels of Vit D, because several substances can inhibit these enzymes. Patients show different reactions to Vit D3 

administration, and are classified into high, moderate, and low responders 41-43. Nonetheless, it has yet to be 

completely understood which genomic and epigenomic modifications influence Vit D homeostasis, although up 

until 700 genes encoding for Vit D targets have been identified through several genome‐wide association studies 

(GWASs) 37,44. For example, several Single Nucleotide Polymorphisms (SNPs) in the gene encoding for CYP2R1, 

can affect the expression and/or function of the enzyme, and they are associated with low levels of 25(OH)D, 

reduced sensitivity to Vit D analogues, and several diseases as rickets, obesity and tumors 45-51. Other studies 

examinate the VDR gene. It is associated with bone mass density and arthritis 52. Several sites in the VDR have 

been identified, that Table 1. Drug interactions with vitamin D. 

Drug/  Action  Clinical  Interaction  Substance     Action  
Erdafitinib  Pharmacodynamic effects of   It is recommended to reduce   Major 
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   (FGFR/aKlontho) inhibition by   phosphate intake to    erdafitinib can cause   600‐800  mg per day  

  hyperphosphatemia 

Ergocalciferol and   Additional toxicity, manifesting   In case of hypercalcemia, vitamin D Major  Vit D3 

derivates   hypercalcemia, hypercalciuria   and any Calcium supplements      and 

hyperphosphatemia   should be immediately avoided 

Oxcarbazepine It Induces CYP450 inducers. It may Patients who metabolize CYP450 Moderate   decrease the 

pharmacologic  poorly must be supplemented   effects of vitamin D analogues,   with double doses of Vi D   

inducing the hepatic conversion of  when receiving oxcarbazepine   Vitamin D to inactive metabolites.  

Magnesium salts  Possible increases in plasma   Patients on chronic dialysis  Moderate 

   hypermagnesemia, particularly   treatment with a vitamin D     in chronic renal dialysis patients,   

analogue should avoid    due to potentially additive    magnesium‐containing    pharmacologic 

effects. Chronic    products    hypermagnesemia may be one  

   of the causes of adynamic bone  

   disease in dialysis patients      

Indapamide and   Thiazide diuretics inhibit the renal  Serum calcium should be   Moderate 

 others thiazide   excretion of calcium and may    monitored if patients experience  diuretics   also 

enhance the responsiveness   sign of hypercalcemia. 

   of bone and renal tube to    parathyroid hormone. Thus,    the concurrent use of large    amount of 

calcium or vitamin D    can lead to excessively high    levels of calcium. 

can be recognized using restriction enzymes TaqI, BsmI, ApaI, and FokI. Basing on these sites, the alleles called 

T‐t, B‐b, A‐a, and F‐f. TaqI SNP (rs731236) cause a T>C substitution. The T nucleotide is also called allele T, 

the C nucleotide is known as allele t; this mutation results in methylation. An A>G nucleotide substitution is the 

result of BsmI (rs1544410) SNP, the A nucleotide corresponding to allele B and the G nucleotide corresponding 

to allele b. This mutation influences the transcription process. Moreover, FokI SNP (rs2228570) leads to a T>C 

substitution on the codon start (ATG ® ACG) 53-55 that cause the production of a shortened protein with more 

transcription activity because of its minor steric bulk 56. In this SNP, the T nucleotide is called allele f, while the 

C nucleotide is allele F. Lastly, ApaI (rs7975232) SNP causes a C>A substitution, known as A>a allele, but the 

impact of this last polymorphism has yet to be clearly described. These polymorphisms correlate with diseases 

onset and homeostasis processes 52,53,55. Two lesser-known polymorphisms in the 5’ promoter region of the VDR 

gene has been described: Cdx2 (rs11568820) and GATA (rs4516035). The first one consists of an A>G 

substitution, provoking a deletion of the binding site. The G allele is accountable for a 70% reduction in the VDR 

transcriptional activity. Similarly, the T>C nucleotide substitution caused by GATA polymorphism results in a 

decreased VDR promoter activity. These SNPs are in linkage disequilibrium and are analyzed as haplotypes 57,58. 

They have also been correlated with an increased risk of prostate cancer. Example of medical conditions are 

provided in Table 2. The most used technology platforms for the genotyping of known SNPs include I) 

fluorescence‐free PCR‐based methods, such as allele‐specific amplification and RFLP; II) sequencing methods, 

either as automated Sanger sequencing or high‐throughput sequencing technologies called ‘Next Generation 

Sequencing’ (NGS). 

Table 2.  Vitamin D receptor gene polymorphisms’ frequency and several clinical conditions linked.  

SNP code  Genetic  Functional  MAF  Medical    variant   consequence      

conditions 
rs2228570  FokI T>C  T>C eliminates  0.35 T  Calcium absorption and calcium 

   (Met1Pro)   translation start     accretion to skeleton 

     site    Vitamin D and parathyroid hormone  

         levels60 

        Invasive ovarian carcinoma          and breast cancer risk61 

rs1544410  BsmIIntron 8   A>G nucleotide   0.26 A   Cutaneous malignant melanoma60 
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     substitution     and colorectal carcinoma risk62 

rs731236  TaqIExon 9   T>C methylation  0.26 C  Breast Cancer Prognosis 

   nucleotide 352T>C       Psoriasis60 

r7975232  ApaI T>g  T>G nucleotide  0.50 T  Renal Cancer Carcinoma risk63 

     substitution 

rs11568820  CDx2  A >G eliminates  0.46 T  Prostate cancer risk60 

     Cdx binding site    Calcipotriol response 

        Growth defect and urinary calcium/          keratinise60 levels 

rs4516035  GATA  T>C eliminates   0.18 C  Growth defect and urinary calcium/ 

     GATA binding site    keratinise levels 

        Fat gain, BMD and apparent BMD60 

MAF = Minimum Allele Frequency. 

THE ROLE OF VITAMIN D IN OSTEOPOROSIS 
Vit D can increase dietary calcium absorption by the action of PTH, to promote the maintenance of an adequate 

calcium homeostasis 64. PTH stimulates the activity of 25(OH)D‐1α‐ hydroxylase, which is responsible for the 

transformation of 25(OH)D to 1,25(OH)2D, while this one is inhibited by 1,25(OH)2D itself 65. Moreover, ViD3 

inhibits parathyroid cells proliferation, leading to a decreasing in PTH secretion and activity. The calcium 

absorption occurs by the activity of a protein localized in the brush borders of the intestinal epithelial cells, that 

binds the ion and transports it to the cytoplasm. Furthermore, 1,25(OH)2D promotes calcium passive absorption 

by enhancing permeability “tight junctions” 66. Calcium and phosphorus form hydroxyapatite, which gives 

strength to the bones. A deficiency in Vit D causes a compensatory raise in PTH, which induces bone turnover 

and calcium renal tubular reabsorption in order to maintain calcium levels 67. So, lack of Vit D indirectly exerts 

its action on the bones, causing hypocalcemia and hypophosphatemia, leading to rickets orosteomalacia, depends 

on the age 68 (Figure 5).  

Both are caused by an impairment in bone mineralization due to a non‐adequate calcium‐phosphate product and 

to the effect of PTH on the kidneys, which cause phosphaturia 69. Good blood levels of Vitamin D3 have a great 

impact on bone density 70. Fracture risk is correlated to bone mineral density, Vit D is essential for the treatment 

of osteoporosis 71. Bone tissues are constantly transforming, through modelling and remodeling processes. 

Modelling is important to adapt the bone’s structures to the stresses due to growth and age. Remodeling is useful 

to replace damaged or aged bone tissue 72. These processes are mediated by osteoblasts, osteoclasts, osteocytes, 

and lining cells. Osteoblasts regulate the formation, deposition, and mineralization of bone tissue 73. They also 

mediate the differentiation and maturation of osteoclasts, involved in bone resorption. Osteoclasts express various 

factors that regulate osteoblast activity 74. Osteocytes, act as mechano-sensors and regulate both osteoblasts and 

osteoclasts functions. Lining cells assist the other bone cells during bone remodeling 75. The discovery of 

Osteoprotegerin (OPG), a receptor that can bind to Receptor Activator of Nuclear factor kappa‐B Ligand 

(RANKL), derived from osteoblasts, has permitted to improve comprehension on the mechanism of cross‐

communication between osteoblasts and osteoclasts. RANKL is situated on the surface of osteoblasts, while 

RANK, its own receptor, is localized on osteoclasts 76. This interaction, in addition with the  
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action of macrophage colony‐stimulating factor (m‐CSF), stimulates the precursor cells to differentiate into 

osteoclasts, also increasing their activity 76. 1,25(OH)2D mediates this process by binding to the VDR expressed 

on osteoblasts surface so as to induce RANKL’s production 77.  

Osteoporosis consists in a progressive bone mass reduction associated with skeletal microarchitecture alteration, 

causing bone strength loss, and increasing the risk of pathological fractures even after some very mild traumas; 

the osteoporotic fractures principally occur on the vertebral bodies and the femoral neck 78. It can be classified in 

primary and secondary. Primary osteoporosis can be also divided into Type 1, postmenopausal osteoporosis, and 

Type 2 or age‐related osteoporosis. The first one occurs in women almost 15–20 years after the onset of 

menopause, and it is related to the estrogen deficiency 79. The second one affects people over 75 years of age, 

more directly related to the aging. On the other hands secondary osteoporosis refers to a huge range of conditions 

and is the result of diseases and pharmacological treatments 79. Sufficient Vitamin D levels and a good calcium 

intake promote the maintenance of an adequate bone mineral density (BMD) and thus help to compensate for the 

decreasing of calcium caused by the bone turnover during menopause or in older age 80. 

Moreover, the muscle weakness observed in hypovitaminosis D enhances the risk of falling, and indirectly also 

the risk of pathological fractures 81. 250HD serum levels represent a valuable indicator of Vit D status. According 

to most experts, Vit D deficiency occurs when serum levels are<50 nmol/L (<20 ng/ mL), while other societies, 

such as the Endocrine Society, advocate larger ranges. 25(OH)D serum levels >75  nmol/L (>30 ng/mL) are 

considered normal overall, while levels between 50–75 nmol/L (20–30 ng/ mL) are considered as Vit D 

insufficiency 82.  

VITAMIN D AND MUSCLE HOMEOSTASIS 
Persistent Vitamin D deficiency could lead to proximal myopathy and unsteady gait 84. Moreover, typical 

characteristics of rickets and osteomalacia are muscular aches and hypotonia. Muscle protein production is 

stimulated by 1,25(OH)2D, which is responsible of calcium transport in the sarcoplasmic reticulum, contributing 

Figure 5.  Calcium homeostasis regulation by vitamin D in bone, kidney, intestine and parathyroid glands.  
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to muscle contraction 85. Based on VDR’s expression in muscles, it has been suggested that Vit D could exert 

influence on this tissue. Studies in mice knockout for the skeletal muscle specific VDR showed a decreased muscle 

type 2 fiber diameter 86. Another study suggests the possibility of a Vit D modulation on myostatin, that negatively 

regulate muscle mass 87. Based on a decrease Vit D production in the skin during aging, with a reduction in the 

renal action of 25(OH)D and in the VDR concentrations in muscle tissue, all these effects may make the muscle 

more sensitive to Vit D3 deficiency and enhanced the risk of falls. 

A proper sunlight exposure represents the more efficient method to maintain good Vit D levels, since its content 

in natural sources is very low 88. Whole‐body sun exposure during summer provides specifically likely 10,000 IU 

Vit D, while every 100 IU of Vit D supplement administered increases 25(OH) D levels by 0.5 to 1 ng/mL 89. 

Obese people or people with malabsorption probably require higher doses 90. Moreover, older age, higher BMI 

and darker skin increase the risk of suffering from Vit D deficiency. 

VITAMIN D SUPPLEMENTATION AND MODULATION OF IMMUNE FUNCTIONS: PUTATIVE 

IMPLICATIONS FOR CANCER PATIENTS 
The immune system is composed of different cell types, for example monocytes, B and T‐type lymphocytes and 

so on. Their activity can be modulated by Vit D 91. Indeed, it can control the expression of the genes involved in 

immune responses. In fact, in various epidemiological studies, a correlation between autoimmune disease and risk 

of infections with low serum levels of 25(OH)D has been 92. Some interventional studies, aimed to improve the 

levels of 25(OH)D in patients suffering from immune‐related disorders, have produced contrasting results 93.  

Some reports from the mid-18th to the early 19th century, have provided evidence for the correlation between 

Vitamin D and innate immune response, when tuberculosis was treated with cod liver oil, a rich source of Vit D3, 

and exposition to sunlight 93. During an infective process, proinflammatory substances and growth, stimulate 

CYP27B1 which induces the transformation of 25(OH)D to 1,25(OH)2D. The latter, through autocrine 

mechanism, increases the production of cathelicidin 94, which has antiviral and antibacterial functions on different 

microorganism. Furthermore 1,25(OH)2D has a paracrine activity, stimulating macrophages, reaching serum 

concentrations of 30 ng/mL, provoking hypercalcemia, a marker of infection 95. 1,25(OH)2D can also maintain 

immune tolerance in Antigen‐Presenting Cell (APC) and manages the production of cytokines and co‐stimulation 

molecules and the surface expression of MHC class II 96 (Figure 6). The modulation of the immunogenic cytokine 

profile has an important role in immune homeostasis; for instance, Vitamin D enhances IL‐10 levels, that has an 

anti‐inflammatory activity 96. On the other side, 1,25(OH)2D decreases the production of cytokines that have pro‐

inflammatory and atherogenic effects, which led to immune hyperactivation, as IL‐6 and IL‐17 97. Finally, the 

stimulate the activity of NK cells can be modulated by 1,25 (OH)2D, because it may activate NK cells and could 

offer a new potential use in cancer patients treated with immune check‐point inhibitors 98. 

VITAMIN D AND CANCER  

Vitamin D Association with Cancer Risk and its Prevention 
Vit D3 is commonly used in various lines of therapy, with regard to the patients’ comorbidities 99. Based on pre-

clinical studies both in vitro and in vivo, different pathways have been suggested, through which Vit D may 

impede carcinogenesis and slow tumor progression. Moreover, observational studies hypothesize that Vitamin 

D3 may provide additional protection against cancer mortality rather than cancer occurrence, regardless of a 

reduction in both 100‐102. Oncological patients develop one or more comorbidities, such as cardiopathy, 

hypertension, diabetes, osteoporosis, apparently not related to the concomitant neoplasia 103. Vit D3 deficiency 

represents one of these medical conditions, typically discovered while executing routinary blood tests and widely 

related to osteoporosis, fractures and in general bone disorders. Rusińska et al 12, suggested that patients should 

be classified according to comorbidity, age and blood level of Vitamin D. According to these authors, in adults 

with serum levels <50 nmol/L (<20 ng/mL) it could be sufficient behavioral strategies such as sunbathing at least 

15 minutes between 10.00‐15.00 h, without sunscreen, from May to September. However, this is imprudent for 

people over 65 or African people due to a decreased efficacy of Vit D skin synthesis. Oral supplementation is 

furthermore recommended, specifically with a dosage from 800 to 4000 UI/day, based on age, body weight and 
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Vit D3 food intake 104. Oncologists and General Practitioners (GP) should therefore focus to their patients’ blood 

test results and, in cases of low level of Vitamin D, act consequently, in order to avoid Vit‐D3‐related symptoms 
105.  

 
system. 

Vitamin D Pathophysiology in Cancer Prevention 
Observational studies have investigated the role of Vit D3 in cancer development in order to evaluate if VitD3 

can play a protective role. However, these studies have not found a correlation between low levels of Vit D in the 

blood and an increased cancer risk; so, its role remains uncertain 106. Manson et al 107 conducted a randomized, 

double‐blind, placebo‐controlled, in order to evaluate risks and benefits of Vitamin D3 and marine omega‐3 fatty 

acids for the prevention of cancer amongst 28.871 subjects (men ≥50 y.o. and women ≥55y.o.). Patients were 

randomized in four homogeneous groups, according to age, sex, and ethnic group. The four groups were: Vitamin 

D supplement, Omega 3 fatty acid supplement, and both agents and placebo. Any patients had a history of cancer 

(except for non‐melanoma skin cancer) or cardiac disease at the time of study inclusion 107. A total of 1617 

participants achieved the primary endpoint of invasive cancer, with analogous events in the Vitamin D group and 

placebo group, and the two groups did not significantly differ in the incidence of site‐specific cancer (prostate, 

breast, colorectum). During the follow‐up, 154 in the Vitamin D group and 187 in the placebo one died from 

cancer 108. Although this study has adequate size and duration (>5 years), there is no evidence that oral Vit D3 

supplementation has an impact on cancer incidence in healthy adults, but it suggested to take in consideration 

BMI (Body Mass Index), since the normal‐weight participants showed decreased cancer incidence, likely 

associated with the treatment. 

Vitamin D Levels and Breast Cancer 

Figure 6.  Schematic representation of Vitamin D functions on cells of the innate and adaptive immune  
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The presence of the same enzymes responsible for Vit D metabolism in epithelial breast cells, as the kidneys, 

suggest an influence of Vit D on breast cancer: 1,25(OH)2D has a chemo‐preventive action that support the control 

on the cells cycle. According to preclinical studies, the supplementation of Vit D3 promotes differentiation and 

apoptosis, and inhibits cell proliferation 109,110. To support this hypothesis, a preclinical study was carried out: 

human mammary cells were incubated with 25(OH)D physiological concentrations, and it was observed that these 

cells produced 1,25(OH)D enough to suppress cell proliferation 111. It was suggested that, in breast cells, Vit D 

core receptor and metabolic complexes may exert their action in an autocrine or paracrine way 111. In a meta‐

analysis based on 9 studies aimed to evaluate the interactions between Vit D level and postmenopausal breast 

cancer on 5206 women and 6450 controls, it was proved that there is a non‐linear inverse association between 

blood levels of 25(OH)D and postmenopausal risk of breast cancer 112. These findings were explained through 

physical and hormonal changes experienced by women in menopause, including weight gain and obesity, which 

induce an augmented circulating estrogen level, and so an augmented risk of hormone‐dependent breast cancer 
113. Therefore, Vit D supplementation might lower the risk of this kind of cancer as it can downregulate estrogen 

receptors expression and then reduce their synthesis and signaling 114. 

Prostate Cancer and Vitamin D  
There are numerous studies about how Vit D could influence the clinical history of prostate cancer. Chen et al 115 

evaluated calcitriol, 1alpha‐hydroxiVit D2 (doxercalciferol), and 19‐nor‐1alpha‐25‐dihydroxyVit D2 

(paricalcitriol) as single agents in patients suffering from castration‐resistant prostate cancer (CRPC) and 

castration‐sensitive disease. Despite authors observed a reduction of the prostate specific antigen (PSA) levels in 

castration‐sensitive disease and few evidence of activity in CRPC (19% PSA response rate), strong evidence 

convincing about the clinically important single‐agent activity was not confirmed by any of these studies 116. 

However, these results could be influenced by the associated use of Vitamin D analogues and dexamethasone, 

given its control on the hypercalcemic effects of calcitriol and its antineoplastic activity 117. In large clinical trials 

that compared analogues to single‐agent glucocorticoids, reported PSA response rates were in the range of 3–

10%. Moreover, single agent doxercalciferol was investigated in 26 patients with CRPC, but there was not a 

substantial reduction of PSA. Paricalcitriol was assessed on a 3‐times‐aweek schedule, and it did not correlate 

with a reduction in serum PSA 117,118. Two randomized trials studied the association of Vitamin D3 and cytotoxic 

agents. In the first one (ASCENT I) 115, 250 patients were randomized to receive either standard therapy for 

castration resistant prostate cancer (docetaxel 36 mg/m2 weekly, every 4 weeks, and every 6 weeks) or the same 

therapy adding calcitriol (DN‐101), at 45 mcg per os/die. The authors reported a significant difference in the DN‐

101 arm, although patients did not meet the primary endpoint, and there also was a longer median survival rate in 

the patients receiving calcitriol (24.5 months vs. 16.4 months). The second study (ASCENT II) 120 was a larger 

trial started to confirm the better survival of DN‐101 plus docetaxel group. However, the results didn’t 

demonstrate improvement in the antineoplastic efficacy of Docetaxel in CRPC. Therefore, after an interim 

analysis demonstrated a statistically inferior survival in the DN‐101 group, the study was interrupted 118,119. 

Vitamin D and Melanoma 
Vit D levels and alterations in its metabolism can be instinctively related to skin cancer. 1,25(OH)2D3 anti‐

melanoma activity and its influence on differentiation, cell‐death, cancer cell invasion and metastasis were already 

known 30 years ago 121,122. Many studies have proved that the same above‐mentioned mechanisms (the VDR 

expression in cancer cells and its effect on the cell cycle), can take part in melanoma carcinogenesis 121. A study 

conducted to evaluate the in vivo activity demonstrate that the growth of human‐melanoma‐derived xenografts in 

immunosuppressed mice was inhibited by Vit D3 122. Moreover, the activity of Vitamin D3 on melanoma, have 

been investigated by several studies, but with discordant results. In fact, some studies suggested a protective effect 

of high Vitamin D3 levels at the time of diagnosis, while other authors have shown that this effect is ascribed to 

the fluctuation in 25(OH)D3 levels during follow‐up, rather than to levels at the time of diagnosis 123,124. 

Vitamin D and Colorectal Cancer 
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Several studies trying to find a correlation between Vitamin D3 and the colorectal cancer development (CRC) 

have proposed an inverse relationship between blood 25(OH)D levels and the risk of CRC 125. Four meta-analyses 

showed inverse correlation between the risk of CRC development and serum 25(OH)D levels. Lee et al 126 

demonstrated an increased influence of these levels on CRC, while two other papers by Gandini et al 127 and 

Touvier et al 128 reported a decrease in cancer incidence for each increase of 100 IU/L and 25 nmol/L of circulating 

Vit D3, respectively. Finally, Maalmi et al 129 examined five cohort studies from three distinct geographical 

regions (United States, Europe and Japan) and they found robust results with the previous three studies, observing 

a considerable decrease in cancer mortality (up to 35%). Even though the trial sample size was limited, the results 

were statistically significant in patients with higher level of Vitamin D3: from a population of 2330, only one 

achieved 1202 included patients. Maalmi et al 129 in a recent update, included 11 prospective cohorts and achieved 

the same results as done before. In a subgroup analysis of a European studies with larger sample size including 

stage I‐IV, it was found a stronger association between Vit D levels and overall survival (OS) 129. A randomized 

double‐blind phase II clinical trial, enrolled patients from April 2012 to November 2016 with diagnose of 

metastatic CRC previously untreated. They were randomized to FOLFOX‐bevacizumab plus supplementation of 

high dose of Vit D3 (8000 IU/day for 2 weeks followed by 4000 IU/day) vs. standard‐dose FOLFOX‐bevacizumab 

plus Vitamin D3 (400 IU/day) 130. The results, although not reaching statistical significance, showed improved 

PFS in patients assigned to the high‐dose Vitamin D3 arm. A recent meta‐analysis investigated the correlation 

between serum Vit D levels and impact on survival and risk of recurrence in stage III colorectal cancer (CRC) 

patients. Ottaiano et al 131 demonstrated that patients with lower levels of Vitamin D had a 38% and 13% increased 

risk of death and recurrence, respectively. These findings indicate that a low Vit D concentration negatively 

impacts the time‐to‐outcome in stage III CRC 131. 

Vitamin D and Head‐and‐Neck Cancer 
Head‐and‐neck cancer (HNC) predominantly affects the older population with metabolism disruptions, due to 

comorbidities or intrinsic frailty. A higher prevalence of Vitamin D3 deficiency in HNC patients was shown in a 

recent publication 132. In a meta‐analysis, Pu et al 133 describe an inverse association between HNC incidence, 

mortality, Vit D3 exposure or dietary or supplemental intake, with an improvement in prognosis. 

Vitamin D Levels and Bladder Cancer 
Recent studies have investigated the association between bladder cancer (BLC) and Vit D3 serum levels. Baykan 

et al 134 conducted a genetic analysis to prove a connection between VDR polymorphisms and the developing risk 

of BLC. It was found a statistically significant difference in the genotype distribution of FokI polymorphism, 

which was, however, lost when adjusting the odds ratio by smoking history. Two different meta‐analyses 135,136 

highlighted that low 25(OH)D serum levels increased the risk of BLC development. Zhang et al 135 demonstrate 

that patients with low Vit D level had an increased risk of BLC development than patients with higher level of 

serum 25(OH)D. Moreover, Zhao et al 136 demonstrated that high 25(OH)D serum concentrations reduced BLC 

risk by 60%. 

Vitamin D and Onco‐Hematological Cancer 
Sunlight exposure has a potential protective role in various hematologic pathologies 137; consequently, Vit D3 

also has an impact on prevention. A recent meta‐analysis that includes 30 between case‐control and cohort studies 

demonstrated that the possibility of use Vitamin D3 supplementation content in food or their surrogates (sun and 

UV rays’ exposure) is a good protective factor in non‐Hodgkin lymphoma (NHL) 138. Results showed that UVR 

exposure may have a protective effect on NHL; however, a higher risk of come down with NHL seems possible 

when Vitamin D3 serum levels < 25 nmol/L, although these results seem not significant. Drake et al 139 conducted 

a retrospective, observational study where they proved worse prognosis in newly diagnosed Non‐Hodgkin 

Lymphoma patients with Vit D3 deficiency. In addition, in some histotype (like T‐cell lymphomas), even with 

normal Vit D levels, supplementation was necessary. However, this work did not establish a strong relationship 

between low Vit D3 serum levels and a worse prognosis. 

VITAMIN D AND HEART DISEASES 
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In human body the receptors for vitamin D are highly expressed. It has recently been discovered that Vitamin D 

receptors are located in endothelial cells and cardiac cells, regulating their metabolism, calcium homeostasis and 

metalloproteases endocardial production 140. In a recent published article, authors demonstrated that low serum 

level of 25(OH)D increased the risk of cardiovascular disorders, and in general cardiovascular mortality 141. 

Recently, a meta‐analysis showed that the supplementation of Vit D doesn’t lower cardiac mortality, heart attack, 

MACE (major adverse cardiovascular events), or myocardial infarction, either in old or in young patients 142. 

Anyway, it is suggested that in pediatric patients the supplementation of Vit D may have good impact in cardiac 

mortality in adulthood, maybe because of epigenetic modifications Vit D induced. In addition, observational 

studies have shown, in their secondary purposes, an inverse correlation between serum Vitamin D levels and heart 

disease incidence, even though several confounding factors can alter the data’s interpretation and a conclusion 

can’t be clearly established 143,144. The primary endpoints, however, concerned with the relationship between Vit 

D and the risk of postmenopausal osteoporosis in women and dialysis in patients with renal failure. It is notable 

that these studies included elderly people or at least non‐premenopausal women. Therefore, long‐term benefits of 

Vitamin D for cardiovascular disease events were not taken into account as a primary endpoint. Consequently, it 

is useful to conduct clinical studies on the inverse association between high doses of Vit D and cardiac events as 

a primary result in a larger population including young subjects. Another recent study showed that early 

administration of high‐dose enteral vitamin D offered no advantage compared to placebo in terms of mortality in 

critical patients with vitamin D deficiency 145. By contrast, other studies showed that improvements in endothelial 

function and reduction in the expression of oxLDL and ICAM1 can be provided by daily vitamin D 

supplementation at 2000 IU for three months in patients suffering from high blood pressure and diabetes 146. 

Another, similar trial, showed that the everyday administration of 2000 IU and 800 IU of Vit D for two years 

sensibly lowered systolic blood pressure 147. 

VITAMIN D AND HUMAN MICROBIOTA 
The human microbiota consists of the population of commensal, symbiotic and pathogenic microorganisms that 

houses human body. It is composed of around 900 or 1000 different species of microorganism of bacteria, 

bacteriophage, protozoa, fungi and small protists 148. The gut microbiota is the most varied, vast, and well 

investigated, but the epidermis’ microbiota, lung, buccal cavity, and genitourinary system is also becoming 

relevant in human pathophysiology 149. The gut microbiota is being considered as an organ given its importance 
150. Both genetic and non‐genetic factors and in particular diet dynamically influence the gut microbiota, although 

eating habits are the main cause of these changes 151,152. The human microbiota, as demonstrated by several clinical 

studies, is involved in numerous physiological mechanisms such as the production and degradation of several 

human nutrients and metabolites, including vitamin D 139,153‐157. VDR is widely found in normal intestinal 

epithelial cells, in particular in the crypts. Vitamin D/VDR signaling pathway plays a role in immunomodulation 

and intestinal barrier homeostasis by regulation tight junctions and adherent junction elements, but also by 

releasing antimicrobial peptides, like defensins 159,160. In this scenario, a dynamic interaction has been observed 

between active metabolites of Vitamin D and butyrate producers such as Firmicutes 161-163: butyrate‐producing 

intestinal microbiota promote the local production of 1,25(OH)2D by colon resident immune cells. It is 

demonstrated that VRD signaling is also influenced by Firmicutes, with other butyrate‐producing bacteria 

(Coprococcus and Faecalibacterum), further promoting anti‐inflammatory function 164. Furthermore, the 

modulation of bacteria like Firmicutes engages genes that control mucus and butyrate enhances gut healing 

processes 155. An observational study of 567 elderly men showed an association between high serum Vit D levels 

and an increment in butyrate-producing bacteria 161. In two interventional studies conducted on patients with 

Intestinal Bowel Disease (IBD), it was found that after administration of vitamin D intestinal microbiota 

significant changes 165,166. In human cell cultures, an increase in VDR expression was observed following the 

introduction of Lactobacilli 167. A GWAS evaluation of the microbiota showed changes in VDR according to diet 

and non‐genetic factors from 1812 subjects 168. About the axis gut microbiota–Vit‐D, an intact Vit D signaling is 

important for the health of gut microbiota. In fact, it is reported that in mice the disruption of Vit D metabolism 
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causes intestinal dysbiosis 154, while thanks to a supplementation of Vit D in adults suffering from cystic fibrosis 

it has been identify a clear change in their intestinal and airway microbiota, with an enrichment of Lactococcus, 

which is linked to better intestinal health 169. It has also been observed that vitamin D supplementation can restore 

gut dysbiosis and reduce liver damage induced by a high‐fat diet by increasing the production of Lactobacilli 159. 

On the contrary, high doses of Vitamin D administered to healthy humans do not modify the stool microbiome 

composition 170. These studies on humans suggest that the effects on the gut microbiota derived from vitamin D 

supplementation are expressed in case of physiological reduction of its levels whereas benefits are not providing 

in humans with normal ones. 

CONCLUSIONS 
Vit D works as a steroid hormone. Its main source is the conversion of 7‐dehydrocholesterol to Vitamin D in the 

skin induced by UVB. Additional sources are foods that contain Vit D and dietary supplements 2,3. Whatever the 

main source, several hydroxylation reactions are needed to get to its active form, 1,25‐dihydroxyvitamin D, which 

is responsible of its biological effects. Vitamin D takes part in several physiological processes, all involved in 

calcium homeostasis. Vit D biological activities are mediated by its binding to VDR, a nuclear receptor for steroid 

hormones that has a transcription factor‐activity that ligand‐activated, so regulating genes’ expression. Although 

Vit D receptor is expressed mostly in organs with high sensitivity to Vit D because of their role in homeostasis of 

calcium, such as the bones, kidneys, and small intestine. VDR can also be found in the skin, and in certain cells 

immune system cells, suggesting that Vit D influences the immune response to numerous pathologic conditions 
86. It is commonly known that rickets in children is directly caused by a diet with severe deficiency of Vit D. On 

the other hand, the association between osteomalacia in adults and low serum level of Vit D is more controversial. 

It has been suggested that rickets and osteomalacia may be prevented by a supplementation of 400 IU of Vit D 

per day, when serum 25(OH) D levels rise above 30 nmol/L 171. Nonetheless, supplementation with only Vit D 

does not seem to be the remedy for limiting fracture risks. On the other hand, the incidence of hip and other 

fractures in adults can be reduced up to 20% thanks to the combination of calcium and Vit D orally implementation 

(1000 mg and 800 UI/die, respectively), due to both an increase in 25(OH)D serum levels by 25 nmol/L and an 

improvement of BMD and bone quality 172-174. Vit D also regulates muscle homeostasis, affecting strength and 

development of the muscles. In fact, muscle weakness is common in subjects with chronic kidney disease because 

of the depletion of 1,25(OH)2, and in individuals with genetic mutations in CYP27B1 and Vitamin D Receptor 
37,44. Low level of Vitamin D is also associated with an augmented risk of autoimmune diseases, multiple sclerosis 

as an example. Given the role that 1,25(OH)2D has in downregulating the adaptive immune system, it’s 

understandable how Vit D deficiency may lead to autoimmune diseases, like type 1 diabetes, multiple sclerosis, 

and inflammatory bowel disease 10. Recent evidence on Vitamin D status and cardiovascular disease’s risk suggest 

that there is no clear advantage from Vitamin D supplementation in patients with heart failure risk. Anyway, the 

available data are not enough to draw definitive conclusions, and specific trials are required to better clarify if 

vitamin D supplementation in individuals with cardiovascular disorders adds some benefits. As to type 2 diabetes 

mellitus and metabolic syndrome, their association with low Vit D serum levels is supported by numerous studies, 

especially the relationship between Vitamin D supplementation and the slowing in progressing from prediabetes 

to T2DM 175. Recently, a great and increasingly importance has been given to the importance of the microbiota 

in the balance of human health, and numerous studies are underway to better clarify the relationship between the 

gut microbiota composition and the development of diseases. The role of Vitamin D supplementation in improving 

gut microbiota composition has been supported by some studies, although some questions persist about the 

adequate 25(OH)D serum level require to improve the microbiota–Vit‐D axis 170,176. During COVID‐19 pandemic, 

observational studies and meta‐analyses explored the connection between Vit D levels and severity of SARS‐

CoV‐2 disease. Results correlate low Vit D serum levels with high COVID‐19 mortality and morbidity; however, 

there are many factors that should be considered, such as a similarity between the risk factors for Vit D deficiency 

and for COVID‐19 177,178. Nevertheless, it has been suggested by recent studies that hospitalized patients with 

COVID‐19 had no benefit from Vitamin D oral integration and no association has been found between serum 
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25(OH)D levels and hospitalization risk in COVID‐19 patients 179,180. Therefore, drawing definitive conclusions 

on how Vitamin D can decrease the risk of more severe SARS‐CoV‐2 infection remain difficult. Concerning 

cancer patients, preclinical and epidemiological trial correlated Vitamin D to the risk of developing cancer, of cell 

proliferation, and with prognosis. Vit D has multiple effects on carcinogenesis, that’s because it takes part in 

controlling several cellular processes, like inflammation, angiogenesis, differentiation, invasion, and apoptosis. 

Overall, epidemiological studies are discordant about the real role of Vit D on cancer developing risk and patient 

outcomes 181,182, showing that new and adequately designed randomized clinical trials are needed. Nonetheless, it 

can be affirmed that supplementation with Vitamin D is a good strategy for both cancers preventing and therapies. 

Furthermore, using exogen Vitamin D in a particular subgroup of patients, for examples the ones with HIV 

infection and cancer, should be part of the standard treatment, with the purpose of decreasing the opportunistic 

infections’ risk. In fact, adequate serum values of Vitamin D should reduce cancer’s risk and immunity deficiency 
183-185. Most significantly, in a recent meta‐analysis it was shown a reduction in the plasma levels of 

malondialdehyde, a marker for lipid peroxidation, when Vitamin D is administered orally at doses of 100,000 and 

200,000 IU every month. Its antioxidant mechanisms are explained with its scavenger activities for membrane 

and lipoprotein, which can decrease ROS production, iron damage and ferroptosis 182-184. 
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