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 Abstract   
This study presents a comparative analysis of the Variational Iteration Method (VIM) and the Series Expansion 
Method (SEM) for solving Fredholm Integro-Differential Equations (FIDEs). Both methods were applied to an 
illustrative example, showcasing their effectiveness in addressing this class of equations. While SEM provided 
approximate solutions with acceptable accuracy, VIM demonstrated a distinct advantage by delivering exact 
solutions. The performance of the methods was evaluated through numerical experiments, with results presented 
using graphs and tables for clarity. SEM, though straightforward in its approach, exhibited slower convergence 
and reduced precision. On the other hand, VIM, employing correction functionals and Lagrange multipliers, 
consistently achieved high accuracy with minimal computational effort. The findings confirm that while both 
methods are effective, VIM is the more reliable and efficient approach for solving FIDEs. Its ability to produce 
exact solutions highlights its suitability for practical applications in mathematics and engineering.  
 
Keywords: Fredholm integro-differential equations, Variational Iteration method and Series Expansion Method   

 

1.   Introduction   

The background of the study of integro-differential equations is rooted in the broader study of differential 

equations and integral equations (Ejes, Nwaoburu & Davies 2024).  

Some important problems in science and engineering can usually be reduced to a system of integral and 

integro-differential equations (Rabbani & Zarali, 2012). Pursuing analytical solutions to integro-

differential equations represents a formidable yet crucial endeavor in mathematical analysis.  

The Variational Iteration Method (VIM) and the Series Expansion Method (SEM) are two powerful 

approaches for solving Fredholm Linear Integro-Differential Equations (FIDEs). VIM utilizes iterative 

correction functionals to refine approximate solutions, offering a simple yet effective method that 

converges rapidly to the exact solution. In contrast, SEM expresses the unknown function as an infinite 

series, where each term is derived to improve the approximation of the solution.  

Several authors have used have Used VIM and SIM in solving integro differential equation. Some have also 

made comparative analysis of different methods in solving integro differential equation. For instance, Ejes, 

Nwaoburu and Davies (2024), made a comparative analysis of the solution to Fredholm linear integro 

differential equations by ADM, MADM and Series Expansion Method, their findings indicate that while each 

method has its strengths, MADM demonstrates superior accuracy in most cases, making it a promising tool 

for handling complex integro-differential equations in numerical analysis. Asire and Najmudd (2023), 

presented a comparative analysis of the Adomian Decomposition Method (ADM), the Modified Adomian 
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Decomposition Method (MADM), and the Variational Iteration Method (VIM). The primary objective of 

their research was to identify the most effective method between the three methods.   

They said that the Adomian Decomposition Method (ADM), Modified Adomian Decomposition Method 

(MADM), and Variational Iteration Method (VIM) are efficient and effective methods for solving a wide 

range of problems. They said that the main advantage of these methods is that they do not require the 

variables to be discretized. Furthermore, these are unaffected by computation round off errors. 

Furthermore, they concluded that while the Adomian Decomposition Method (ADM) involves the 

computation of an Adomian polynomial, which demands time-intensive algebraic calculations, the 

Variational Iteration Method (VIM) requires only the evaluation of a Lagrangian multiplier. Additionally, 

VIM simplifies the computational process and provides solutions more quickly compared to both ADM and 

the Modified Adomian Decomposition Method (MADM).  

Jackreece and Godspower (2017) made a comparison of Taylor Series and Variational Iteration method in 

solution of non- linear integro-differential equation. They observed that the Taylor Series methods seem 

to be more effective as the absolute errors are less than those from Variational iterative method.  

Batiha, Noorani and Hashim (2006), use VIM to solve multi species Lotka-volterra equation. In 

comparisons with the Adomian decomposition and the fourth-order Runge–Kutta methods, they concluded 

that the variational iteration method is a powerful method for nonlinear equations.    

2  Methodology  

Let us consider the linear fredholmn integro differential equation   

𝑢𝑛(𝑥) = 𝑓(𝑥) + λ ∫𝑎𝑏   𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                  (2.1)  
 𝑑𝑢(0) 𝑑2𝑢(0) 𝑑3𝑢(0) 
With   𝑢𝑚(0) = 𝛾𝑚, 0 ≤ 𝑚 ≤ (𝑛 − 1)  𝑡ℎ𝑎𝑡 𝑖𝑠 𝑢(0) = 𝛾1, 𝑑𝑥 = 𝛾2, 𝑑𝑥2 = 𝑏3, 𝑑𝑥3 = 
𝑑𝑛−1𝑢(0) 
𝛾4 … … … … … . . 𝑑𝑥𝑛−1 = 𝛾n−1    

In this context 𝛾1, 𝛾2, 𝛾3, 𝛾3, … … … … . . 𝛾n−1 denotes real constants representing the initial condition of 𝑢(𝑥) 

and its derivatives at 0, while 𝑢𝑛(𝑥) which is equivalent to 𝑑  𝑑𝑥𝑛𝑢
𝑛 denotes the nth derivative of the 

unknown function 𝑢(𝑥) and 𝑓(𝑥) is a known function. These derivatives appear both inside and outside the 

integral sign. The integral function's kernel, denoted as 𝐾(𝑥, 𝑡), and the function 𝑓(𝑥) are specified as real-

valued functions while u(t) represents a linear function of it.  

The methods being discussed include the Variational Iteration Method and the Series Expansion Method, 

each of which has contributed to the progress in solving these types of equations. The following sections 

will provide a detailed explanation of each method.  

2.1  Variational Iteration Method  

This method is employed to solve a wide range of both linear and nonlinear equations, including Fredholm 

integro-differential equations and linear and nonlinear Volterra integro-differential equations, providing 

rapidly converging approximations to the exact solutions. The initial approximation can be chosen 

arbitrarily and may include unknowns that are determined using the initial conditions.   

Let us consider the equation  
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𝐿𝑢(𝑥) + 𝑁𝑢(𝑥) = 𝑓~(𝑥)                                                                                          (2.2) Where 𝐿, 𝑁 are linear and 

nonlinear operators respectively and 𝑓~(𝑥) is a non-homogeneous term.  

The correction functional for the above equation is given as:  

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫0𝑥 𝜁(𝑟) (𝐿𝑢𝑛(𝑟) + 𝑁𝑢𝑛(𝑟) − 𝑓~(𝑟))𝑑𝑟                    

(2.3)  

Where 𝜁 is the Lagrange’s multiplier which can be a constant or function and 𝑢𝑛 is a restricted value which 

implies that it behaves as a constant, hence Δ𝑢𝑛 = 0 where Δ is a variational derivative.  

The following steps outline the application of the Variational Iteration Method:  

First, the Lagrange multiplier 𝜁(𝑟) is determined optimally. The result is then substituted into the 

correction functional, omitting the restriction. By taking the variation of the correction functional with 

respect to the independent variation 𝑢𝑛, we obtain  

Δ𝑢𝑛 Δ𝑢𝑛 0 𝑁𝑢𝑛(𝑟) − 𝑓~(𝑟)𝑑𝑟)                                 (2.4)  

Which is reduced for Fredholm linear integro differential equation  

to  𝑥 

Δ𝑢𝑛+1 = Δ𝑢𝑛 + ∆(∫0 𝜁(𝑟) (𝐿𝑢𝑛(𝑟)𝑑𝑟)              

Appling integration by part to get the value of the Lagrange multiplier 𝜁(𝑟). We get   

(2.5)  

First order    
𝑥 
∫0 𝜁(𝑟) 𝑢′𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢𝑛(𝑟) − ∫0𝑥 𝜁′(𝑟) 𝑢𝑛(𝑟)𝑑𝑟         

Second order  

  (2.6)  

𝑥 
∫0 𝜁(𝑟) 𝑢′′𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢′𝑛(𝑟) − 𝜁′(𝑟)𝑢𝑛(𝑟) ∫0𝑥 𝜁′′(𝑟) 𝑢𝑛(𝑟)𝑑𝑟     

Third order  

  (2.7)  

𝑥 
∫0 𝜁(𝑟) 𝑢′′′𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢′′𝑛(𝑟) − 𝜁′(𝑟)𝑢′𝑛(𝑟) + 𝜁′′(𝑟)𝑢𝑛 ∫0𝑥 𝜁′′′(𝑟) 𝑢𝑛(𝑟)𝑑𝑟  

Forth order   
𝑥 
∫0 𝜁(𝑟) 𝑢𝑖𝑣𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢′′′𝑛(𝑟) − 𝜁′(𝑟)𝑢′′𝑛(𝑟) + 𝜁′′(𝑟)𝑢′𝑛 − 𝜁′′′(𝑟)𝑢𝑛(𝑟) + 

  (2.5)  

𝑑𝑟                     (2.6)  

𝜁(𝑟) = −   

And so on. The identities are all gotten via integration by part.  

The variational principle requires that the correction functional satisfies    

  

Δ𝑢𝑛+1 = 𝑢𝑛+1 − 𝑢𝑛 = 0. This 

implies that  for first order  

𝜁(𝑟) = −1  for second order 

𝜁(𝑟) = 𝑟 − 𝑥  for third order  
(𝑟−𝑥)2 

                (2.7)  
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2 
For nth order,  

𝜁(𝑟) = ( −1)𝑛(𝑟−𝑥)𝑛−1.                   (2.8)  
(𝑛−1)! 
With the Lagrange multiplier determined, next we obtain the successive approximation 𝑢𝑛+1, 𝑛 ≥ 1, of the 

solution 𝑢(𝑥), which will be gotten using selective functional 𝑢𝑜(𝑥).  

𝑢𝑜(𝑥) is selected the initial conditions  

𝑢𝑜(𝑥) = 𝑢(0) for order one  

𝑢𝑜(𝑥) = 𝑢(0) + 𝑥𝑢′(0) for order two  
𝑥2 

𝑢𝑜  for order three  
 𝑥2 𝑥3 

𝑢𝑜  for order four  
𝑥2 

𝑢𝑜  𝑢′′(0) + 𝑥 33! 𝑢′′′(0) + ⋯ + ( 𝑥𝑛𝑛−−11)! 𝑢𝑛−1(0) for order n (2.9)  

Hence 𝑢(𝑥) = lim 𝑢𝑛(𝑥)                  (2.10)  
𝑛→∞ 
2.2  Series Expansion Method  

The Taylor series method represents the solution as a power series expansion. It involves expanding the 

unknown function and the kernel function in Taylor series about a given point and substituting these 

expansions into the integral equation. By equating coefficients of like powers of 𝑥, one can obtain a 

sequence of equations for the coefficients of the series expansion, which can then be solved to approximate 

the solution (Ejes, Nwaoburu & Davies 2024).  

The Series Solution Method is fundamentally based on the use of Taylor series expansions for analytical 

functions. It is crucial to note that the applicability of Taylor series requires the existence of derivatives of 

all orders, necessitating their computation. Additionally, a Taylor series centered at any point b within its 

domain converges to f(x) within a neighborhood around b  

𝑢(𝑥) = 𝑛                                     (2.11)   
𝑛! 
When x = 0, equation (3.29) is reduced to  

 𝑢  𝑎𝑛𝑥𝑛                       (2.12)  

Or 𝑢(𝑥) = 𝑎0+𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 … … … … … … … … … … …                (2.13)   

It is normal to integrate both sides of equation (2.1). Suppose 𝐿−1 is an n – fold integration operator  

𝐿−1(𝑢𝑛(𝑥)) = 𝐿−1(𝑓(𝑥)) + 𝐿−1(𝜆 ∫𝑎𝑏   𝐾(𝑥, 𝑡)𝑢(𝑡))𝑑𝑡)                (2.14)    

    
𝑢 

𝐿−1(𝜆(∫𝑎𝑏 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡))                                                      (2.15)  

Equation (2.15) can be expressed as  
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𝑢(𝑥) = ∑𝑛𝑙=−0  𝑙! 𝛾𝑙𝑥𝑙 + 𝐿−1(𝑓(𝑥)) + 𝐿−1(𝜆 ∫𝑎𝑏   𝐾(𝑥, 𝑡)𝑢(𝑡))𝑑𝑡)                       (2.16)  

Without loss of generality, if  

𝐾(𝑥, 𝑡) = 𝑞(𝑥)𝑤(𝑡)           

Equation (2.17) implies that the kernel is separable,  

Equation 2.4 can be expressed as  

         (2.17)  

𝑢(𝑥) = ∑𝑛𝑙=−0  𝑙! 𝛾𝑙𝑥𝑙 + ℎ(𝑥) + 𝐿−1𝑞(𝑥)(𝜆 ∫𝑎𝑏   𝑤(𝑡)𝑢(𝑡))𝑑𝑡)                                 (2.18)     

𝑙! 𝛾𝑙𝑥𝑙 is gotten from the n-fold integrator operation    

From (2.18)  

𝑢(𝑥) = ∑𝑛𝑙=−0  𝑙! 𝛾𝑙𝑥𝑙 + ℎ(𝑥) + 𝐿−1𝑞(𝑥)(𝜆 ∫𝑎𝑏   𝑤(𝑡)𝑢(𝑡))𝑑𝑡)                               Substituting equation (2.12) into 

equation (2.18), we get   

 𝑎𝑛𝑥𝑛 𝑙! 𝛾𝑙𝑥𝑙 + ℎ(𝑥) + 𝐿−1𝑞(𝑥)(𝜆 ∫𝑎𝑏   𝑤(𝑡) ∑∞𝑛=0 𝑎𝑛𝑥𝑛)𝑑𝑡 )     (2.19)       

If ℎ(𝑥) and 𝐿−1𝑞(𝑥) comprises elementary functions like exponential functions, trigonometric functions, 

etc., we should employ Taylor expansions for the functions contributing to the function. Now, equating 

coefficients of like powers of 𝑥 on both sides, we obtain a system of equations for the coefficients 𝑎𝑛. Solving 

this system will give us the coefficients and hence the Taylor series solution for equation.   

2.3  Solved Example  

Example 2.3.1: Consider the linear Fredholm integro-differential equation: 𝑢′(𝑥) = 𝑒𝑥 − 𝑥 + 

𝑥𝑒𝑥 𝑑𝑡, with the initial condition 𝑢(0) = 0, and the exact solution is   

𝑢(𝑥) = 𝑥𝑒𝑥.(Asiya & Najmuddin, 2023).  

Variational Iteration Method  

From equation 2.3, the correction functional which is   

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫0𝑥 𝜁(𝑟) (𝐿𝑢𝑛(𝑟) + 𝑁𝑢𝑛(𝑟) − 𝑓~(𝑟))𝑑𝑟  can be expressed as   
 𝑥 1 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) +𝑟𝑒𝑟 − ∫ 𝑟𝑢𝑛(𝑡)𝑑𝑡)𝑑𝑟  
0 
Let 𝑢0(𝑥) = 𝑢(0) = 0  

When 𝑛 = 0  
1 
𝑢𝑟𝑒𝑟 − ∫ 𝑟𝑢0(𝑡)𝑑𝑡)𝑑𝑟  
0 
𝜁(𝑟) = −1 since 𝐿 = 𝑑  
𝑑𝑥 
Putting 𝑢0(𝑥) = 0 and  𝜁(𝑟) = −1 into the correctional functional  
1 
𝑢𝑟𝑒𝑟 − ∫ 𝑟(0)𝑑𝑡)) 𝑑𝑟  
0 
 𝑥 𝑥 
𝑢1(𝑥) = − (∫ ( − 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟) 𝑑𝑟 = (∫ ( 𝑒𝑟 − 𝑟 + 𝑟𝑒𝑟) 𝑑𝑟  
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 0 0 

𝑢  𝑥 𝑟2 𝑥𝑒𝑥 𝑥2   

𝑥2 

𝑢1(𝑥) = 𝑥𝑒𝑥 −  2 

For 𝑢2(𝑥)  

  
1 
𝑢𝑟𝑒𝑟 − ∫ 𝑟𝑢1(𝑡)𝑑𝑡)𝑑𝑟  
0 
𝑢′1(𝑟) = 𝑒𝑟 − 𝑟 + 𝑟𝑒𝑟  

 𝑟  

So, 𝑢2(𝑥) = 𝑥𝑒𝑥 − 𝑥12 2  
 𝑥 1 

𝑢3(𝑥) = 𝑢2(𝑥) −𝑟𝑒𝑟 − ∫ 𝑟𝑢2(𝑡)𝑑𝑡)𝑑𝑟  
0 

 ′ 𝑟 𝑟𝑒𝑟  

𝑢 

 𝑟  

  

So, 𝑢3(𝑥) = 𝑥𝑒𝑥 − 𝑥72 2  

Similarly, 𝑢4(𝑥) = 𝑥𝑒𝑥 − 
432 𝑥2  

𝑥 −  𝑥2  

𝑢5(𝑥) = 𝑥𝑒 

2592 

Observing the pattern, 𝑢𝑛(𝑥) = 𝑥𝑒
𝑥 − 2 (6𝑥)2𝑛−1  

𝑢(𝑥) = 𝑛lim→∞ 𝑢𝑛(𝑥) = 𝑥𝑒𝑥 as − 2 (6𝑥)2𝑛−1 → 0  

Hence, 𝑢(𝑥) = 𝑥𝑒𝑥 which is the exact solution  

Series Expansion Method  

Using inverse operator 𝐿−1 = ∫(.)𝑑𝑥 on example 2.3.1  

We get 𝐿   

∫ 𝑢′(𝑥)𝑑𝑥 = ∫ 𝑒𝑥𝑑𝑥 + ∫ 𝑥𝑒𝑥𝑑𝑥   
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+ 1 𝑥 2 𝑥 2 𝑎 𝑛 

𝑢  𝑥𝑒𝑥 𝑑𝑡 + 𝑐  

Where c is the constant of integration. Using the initial condition 𝑢(0) = 0  

𝑐 = 0  

We get  

𝑢(𝑥) = 𝑥𝑒𝑥 .    

Let 𝑢  𝑎𝑛𝑥𝑛  

𝑢(𝑥) = 𝑥𝑒𝑥 𝑑𝑡. Can be written as  

 𝑎𝑛𝑥𝑛 = 𝑥𝑒𝑥 − +∫ ∑ =0 𝑎𝑛𝑡𝑛 𝑑𝑡            
 𝑥𝑛                   Recall that 𝑒𝑥 

 𝑎𝑛𝑥𝑛 ∞  𝑛! 2 On substitution,  

 2 0 =0 𝑎𝑛𝑡𝑛 𝑑𝑡      

  

 𝑎𝑛𝑡𝑛 𝑑𝑡  

 𝑛=0 0 𝑛=0 

1  

⌋ 

0 
 𝑛=0 𝑛=0 

 𝑎𝑛𝑥𝑛 = ∑∞𝑛=0 𝑥𝑛𝑛! − 2 + 2 ∑𝑛∞=0 𝑛+1              (ii)   

Equation (ii) can be written as   

 𝑥3 𝑥4 𝑥2 𝑥2 𝑎 𝑎 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

3   

 2! 3! 

Comparing co-efficient  

𝑎0 = 0  

𝑎1 = 1  

 1 1 

 𝑎3 = =   

 2! 2 

 1 1 
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 𝑎4 = =   

 3! 6 

 1 1 

𝑎5 = = 4! 24 

Let’s calculate an approximate value for 𝑎2  

 1 1 𝑎1 𝑎2 𝑎3 𝑎4 

𝑎   

𝑎   

 1 1 1 𝑎2 1 1 1 

𝑎   

 𝑎2 1 1 1 1 1 1 

𝑎   

𝑎2 

𝑎   

On evaluation, 𝑎2 ≈ 0.999  
 𝑥2 𝑥3 𝑥4 𝑥5 

Hence the series becomes 𝑢  …  

3  Result  

Table 3.1: Exact and Approximate Solution by ADM, MADM and SEM For Example 1with step size 0.01  

 x  EXACT  VIM  SEM  |Ex-VIM|  |Ex-SEM|  

 0.01  0.010100502 0.010100502 0.010050452 0  5.005E-05  

 0.02  0.020404027 0.020404027 0.020203827 0  0.000200199  

 0.03  0.030913636 0.030913636 0.03046319  0  0.000450446  

0.04  0.041632431 0.041632431 0.040831647 0  0.000800784 0.05  0.052563555 0.052563555 

0.051312354 0  0.001251201 0.06  0.063710193 0.063710193 0.061908516 0  0.001801677 

0.07  0.075075573 0.075075573 0.072623388 0  0.002452185  

 0.08  0.086662965 0.086662965 0.083460282 0  0.003202683  

 0.09  0.098475686 0.098475686 0.094422566 0  0.00405312  

 0.1  0.110517092 0.110517092 0.105513667 0  0.005003425  

0.11  0.122790588 0.122790588 0.116737073 0  0.006053515 0.12  0.135299622 0.135299622 

0.128096337 0  0.007203286  

 0.13  0.14804769  0.14804769  0.139595078 0  0.008452612  
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0.14  0.161038332 0.161038332 0.151236983 0  0.009801349 0.15  0.174275136 0.174275136 

0.163025813 0  0.011249324 0.16  0.187761739 0.187761739 0.174965398 0  0.012796341 

0.17  0.201501825 0.201501825 0.187059649 0  0.014442176  

 0.18  0.215499125 0.215499125 0.199312551 0  0.016186574  

 0.19  0.229757424 0.229757424 0.211728174 0  0.01802925  

 0.2  0.244280552 0.244280552 0.224310667 0  0.019969885  

  
0.010.020.030.040.050.060.070.080.09 0.1 0.110.120.130.140.150.160.170.180.19 0.2 U(x) 

Figure 3.1. Exact and Approximate Solution by VIM and SEM with step size 0.01  

Table 3.2: Exact and Approximate Solution by ADM, MADM and SEM For Example 1with step size 0.05  

 x  EXACT  VIM  SEM  |Ex-VIM|  |Ex-SEM|  

 0.05  0.052563555 0.052563555 0.051312354 0  0.001251201  

 0.1  0.110517092 0.110517092 0.105513667 0  0.005003425  
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 0.15  0.174275136 0.174275136 0.163025813 0  0.011249324  

 0.2  0.244280552 0.244280552 0.224310667 0  0.019969885  

 0.25  0.321006354 0.321006354 0.289877604 0  0.03112875  

0.3 0.404957642 0.404957642 0.360291 0 0.044666642 0.35 0.496673642 0.496673642 0.436177729 0 

0.060495913  

 0.4  0.596729879 0.596729879 0.518234667 0  0.078495212  

 0.45  0.705740483 0.705740483 0.607236188 0  0.098504296  

 0.5  0.824360635 0.824360635 0.704041667 0  0.120318969  

 0.55  0.95328916  0.95328916  0.809602979 0  0.143686181  

 0.6  1.09327128  1.09327128  0.924972  0  0.16829928  

 0.65  1.245101539 1.245101539 1.051308104 0  0.193793435  

 0.7  1.409626895 1.409626895 1.189885667 0  0.219741229  

 0.75  1.587750012 1.587750012 1.342101563 0  0.24564845  

 0.8  1.780432743 1.780432743 1.509482667 0  0.270950076  

 0.85  1.988699824 1.988699824 1.693693354 0  0.29500647  

 0.9  2.2136428  2.2136428  1.896543  0  0.3170998  

 0.95  2.456424176 2.456424176 2.119993479 0  0.336430697  

 1  2.718281828 2.718281828 2.366166667 0  0.352115162  
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 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
U(x) 

Figure 3.2. Exact and Approximate Solution by VIM and SEM with step size 0.05  
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 -0.005 Absolute error 

Figure 3.3: Absolute error with step size 0.01  

 
Figure 3.4. Absolute error with step size 0.05  

Table 3.3. Root Mean Square Error with step size 0.01  

Root Mean Square Error (RMSE)    

MADM  0  

SEM  0.00951404  

  

Table 3.4. Root Mean Square Error with step size 0.05  
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Root Mean Square Error (RMSE)    

VIM  0  

SEM  0.240693898  

  

   

  

4  Discussion  

In this comparative analysis, we evaluated the solutions to Fredholm linear integro-differential equations 

using two different methods: the Variational Iteration Method (VIM) and the Series Expansion Method 

(SEM). The effectiveness of each method was assessed based on numerical accuracy, convergence rate, 

computational efficiency, and ease of implementation. Notably, the VIM is a highly effective approach, 

providing the exact solution, which makes it a superior method for solving these equations.  

The VIM is a robust analytical method that constructs correction functionals using Lagrange multipliers, 

iteratively refining approximations to yield the exact solution. This method efficiently handles Fredholm 

integro-differential equations by iteratively improving the approximation without requiring complex 

transformations or restrictive assumptions. The accuracy and convergence speed of VIM surpass those of 

SEM, making it an ideal approach for solving such problems.  

The Series Expansion Method involves expressing the solution as a series and determining the coefficients 

through various techniques, such as power series or Fourier series. However, compared to VIM, the 

convergence rate of SEM is slower. SEM also requires careful selection of the series type and precise 

computation of coefficients, making its implementation more challenging. While SEM can provide 

approximate solutions, its effectiveness diminishes for problems where high accuracy is required.  

When comparing these methods, the results demonstrate the strengths and effectiveness of both 

techniques. VIM, however, consistently provides more precise approximations and often yields exact 

solutions. When applied to Fredholm linear integro-differential equations with separable kernels, the 

outcomes obtained through VIM and SEM are comparable in structure, but VIM's solutions exhibit superior 

precision and computational efficiency. Moreover, VIM achieves rapid convergence with fewer 

computational steps, whereas SEM requires more iterations to attain similar accuracy.  

Tables 3.1–3.4 illustrate the comparative results, absolute errors, and root mean square errors (RMSE) of 

VIM and SEM in relation to exact solutions. The error analyses confirm that VIM outperforms SEM in terms 

of accuracy and convergence speed. Additionally, statistical assessments highlight that VIM achieves higher 

precision more rapidly than SEM. Furthermore, when the step size was increased from 0.01 to 0.05, SEM 

exhibited a tendency to deviate more from the exact solution and it still lagged behind VIM in terms of 

accuracy and efficiency. The RMSE table also indicates that VIM has zero error compared to SEM  

The visual representations in Figures 3.1 to 3.4 complement these findings, providing a graphical overview 

of the analysis and reinforcing the superiority of VIM over SEM in solving Fredholm linear integro-

differential equations.  
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5.   Conclusion  

The Variational Iteration Method (VIM) has proven to be a superior approach for solving Fredholm linear 

integro-differential equations, consistently delivering exact solutions with high accuracy and efficiency. Its 

rapid convergence and minimal computational effort make it an optimal choice compared to the Series 

Expansion Method (SEM), which, while useful, exhibits slower convergence and greater complexity in 

implementation. The comparative analysis demonstrated that VIM not only provides more precise 

approximations but also requires fewer computational steps, reinforcing its effectiveness. The numerical 

results, graphical representations, and statistical evaluations confirm VIM’s dominance in solving these 

equations. Consequently, for researchers and practitioners seeking an efficient and accurate method, VIM 

stands as the preferred approach.  
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