ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

INVESTIGATING THE M-PROJECTIVE CURVATURE TENSOR IN GBK-5RFN VIA LIE DERIVATIVES

Hassan Nabil Kareem

Department of Mathematics, Education Faculty, University of Aden, Yemen DOI: https://doi.org/10.5281/zenodo.17375707

Abstract

The study of curvature tensors is central to differential geometry, providing insights into the intrinsic and extrinsic properties of manifolds. Among these, the projective curvature tensor has garnered significant attention for its relevance in projective geometry and its applications in physics. Recent developments have focused on generalizing the classical projective curvature tensor to uncover new geometric invariants and broaden the scope of its applications. In this regard, the M-projective curvature tensor has emerged as a notable generalization, offering deeper insights into manifold structures and their geometric behavior. This study examines the properties of the M-projective curvature tensor, highlighting its mathematical significance and potential applications in various space-time models. The analysis employs Lie derivative methods to explore the tensor's structural characteristics, providing a framework for further investigations in differential geometry and theoretical physics.

Keywords: M-projective curvature tensor, differential geometry, Lie derivative, geometric invariants, spacetime models

1. Introduction and Preliminaries

The study of curvature tensors plays a fundamental role in differential geometry. Among the various curvature tensors, the projective curvature tensor has been extensively investigated due to its connections to projective geometry and its applications in physics. In recent years, there has been a growing interest in generalizing the notion of projective curvature tensor to obtain new geometric invariants and explore their properties.

In this context, the M-projective curvature tensor emerged as a significant generalization of the classical projective curvature tensor. This tensor studied in various space-time models and has possessed interesting properties.

The Lie-derivative in generalized fifth recurrence Finsler space for Carton's fourth curvature tensor in sense of Berwald introduced by AL-Qashbari and Baleedi [10]. Ali et al. [6] studied a Lie - derivative of M-projective curvature tensor and established some properties of this curvature tensor. Further, Gouin [19] introduced some remarks on the Lie-derivative. Opondo [22] studied the Lie-derivative on *W*-curvature tensor in recurrent and bi-recurrent Finsler space. The Lie-derivative of forms and its application was investigated by authors [20, 23].

The generalized recurrence, birecurrence and trirecurrence properties for various curvature tensors in sense of Berwald have been discussed by [2, 3, 4, 5, 11, 12, 13, 17, and 21]. The generalized recurrent

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

Finsler spaces of higher orders have been studied by [8, 18]. Let us explore the infinitesimal transformation point given by [10]

$$(1.1) x^{-i} = x^i + v(x) .$$

Where is an infinitesimal point constant and v(x) is acontravariant vector field independent of directional arguments and dependent on positional coordinates x^i only, also $v^i(x) \neq 0$. Infinitesimal method is a tool that leads to Lie-derivatives. The symbol L_v denote the Liedifferentiation operator with respect to the transformation (1.1). The Lie - derivative of a vector field x in sense of Berwald is given by

$$(1.2) L_{\nu}x^{i} = \nu^{j}\mathcal{B}_{i} x^{i} - x^{j}\mathcal{B}_{i}\nu^{i} + (\partial_{i} x^{i})\mathcal{B}_{s}\nu^{j}\nu^{s} .$$

The Lie - derivative of a general mixed tensor field $j^i(x, \dot{x})$ expressed in the form

(1.3)
$$LvT_{jki} h = vmB_mT_{jki} h - T_{jkmh}B_mv_i + T_{mkih}B_jv_m + T_{jm}^i hB_kv^m + T_{jkm}^i B_hv^m + \partial_mT_{jk}^i hB_rv^my^r.$$

The vector *i* is Lie-invariant i.e.

(1.4)
$$L_v y^i = 0$$
.

The metric tensor g_i and the Kronecker delta δ_{h^i} are given by [1, 16]

(1.5) a)
$$_{ij} y^j = y_i$$
, b) $\delta_i{}^i = n$, c) $g_{ij} g^{ik} = \delta_j{}^k = \{ {}^10 \quad if \quad if \quad j \in j^k \neq k \}$

d)
$$\delta_k^i y_i = y$$
, e) $\delta_k^j = \partial_k^i y^j$, f) $g_{kk} = \partial_k^i y_k$ and j) $\partial_j^i y^j = 1$.

The metric tensor, Cartan's connection parameters and Berwald's connection parameters are symmetric in their lower indices and they are positive homogeneous of degree zero in the directional arguments.

Berwald's covariant derivative of the vectors i and y_i vanish identically, i.e. [15]

(1.6) a)
$$\mathcal{B}_k y^i = 0$$
 and b) $\mathcal{B}_k y_i = 0$

The Cartan's fourth curvature tensor jk^ih and Cartan's third curvature tensor Rjk^ih are skewsymmetric it their last two lower indices and satisfy the following relations

(1.7) a)
$$Hkih = Kjkih yj = Rjkih yj$$
, b) $Kjkih = Rjkih - CjsiHksh$ and c) $Rjkihgjk = Rhi$.

The torsion tensor $H_k{}^i{}_h$, deviation tensor $H_h{}^i{}$ and torsion tensor $C_{jk}{}^i{}$ satisfy the following relations

(1.8) a)
$$H_k^i y^k = H_h$$
, b) $H_{jk}^i y_i = 0$ and c) $C_{jk}^i y^j = 0$.

A Finsler space whose Berwald connection parameter $G_{k}^{i_h}$ is independent of y^i is called an affinely connected space (Berwald space). Thus, an affinely connected space is characterized by one of the equivalent conditions [14]

(1.9) a)
$$\mathcal{B}_k g_{ij} = 0$$
 and b) $\mathcal{B}_k g^{ij} = 0$.

Let us explore a generalized $\mathcal{B}K$ –fifth recurrent Finsler space satisfying the relations [9]

(1.10)
$$BsBqBtBnBmKjki h = asqlnmKjki h + bsqln(\delta hi gjk - \delta ki gjh)$$

- $csqlnm(\delta hi Cjkn - \delta ki Cjhn) - dsqlnm(\delta hi Cjkl - \delta ki Cjhl)$

$$-e_{sqln}(\delta_{hi} C_{jkq} - \delta_{ki} C_{jhq}) - 2b_{qlnm} y_r B_r(\delta_{hi} C_{jks} - \delta_{ki} C_{jhs})$$
.

$$(1.11) \quad \mathcal{B}s\mathcal{B}q\mathcal{B}t\mathcal{B}n\mathcal{B}mHkih = \alpha sqlnmHkih + b sqln(\delta hi\ yk - \delta ki\ yh)\ .$$

(1.12)
$$\mathcal{B}_s\mathcal{B}_q\mathcal{B}_l\mathcal{B}_m\mathcal{H}_{hi} = a_{sqlnm}\mathcal{H}_{hi} + b_{sqln}(\delta_{hi}F_2 - y_ly_h)$$
.

$$(1.13) \quad \mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mRjki\ h = asqlnmRjki\ h + bsqln\big(\delta hi\ gjk - \delta ki\ gjh\big)$$

$$- Csqlnm(\delta hi Cjkn - \delta ki Cjhn) - dsqlnm(\delta hi Cjkl - \delta ki Cjhl)$$

Statistics and Mathematical Research Journal

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

$$-e_{sqln}(\delta_{h^i}C_{jkq}-\delta_{k^i}C_{jhq})-2b_{qlnm}y^r\mathcal{B}_r(\delta_{h^i}C_{jks}-\delta_{k^i}C_{jhs}).$$

If and only if

(1.14) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}(CjtiHkth) - asqlnm(CjtiHkth) = 0.$

Taking the Lie-derivative of both sides of [(1.5)d] and using [(1.5)c] when $i \neq j$, we get

(1.15) $L_{\nu}y_{k}=0$.

Taking the Lie-derivative of both sides of [(1.5)a] and using (1.15) and (1.4), we get

(1.16) $L_v g_{ij} = 0$.

M-projective curvature tensor collineation along a vector field v(x) satisfied the relation

(1.17) $L_v W_{jk}^i = 0$.

The M-projective curvature tensor W_{jk}^{i} h is given by [7]

(1.18) $W_{jki} h = R_{jki} h - 16 (R_{jk} \delta_{hi} - R_{jh} \delta_{ki} + g_{jk} R_{hi} - g_{jh} R_k)$.

By applying (1.3) on the Cartan's fourth curvature tensor $K_{jk}{}^{i}{}_{h}$ and h(v) –torsion tensor $H_{k}{}^{i}{}_{h}$, using [(1.6)a] and [(1.5)e,c] when $r \neq m$, we get

- (1.19) $LvK_jkih = vmB_mK_jkih K_jkmhB_mvi + K_mki hB_jvm + K_jmi hB_kvm + K_jkmiB_hv$, and
- (1.20) $L_v H_k{}^i{}_h = v^m \mathcal{B}_m H_k{}^i{}_h H_k{}^m{}_h \mathcal{B}_m v^i + H_m{}^i{}_h \mathcal{B}_k v^m + H_{km}{}^i \mathcal{B}_h v$, respectively. Taking the Lie-derivative of both sides of [(1.7) a], we get
- (1.21) LvHkih = LvKjkihy.

Using (1.4) in above equation, we get

(1.22) Lv Hkih = yjLv Kjkih.

Using (1.19), [(1.7) a] and (1.4) in above equation, we get

- (1.23) $LvHkih = vm\mathcal{B}mHkih Hkmh\mathcal{B}mvi + Kmkih\mathcal{B}jvmyj + Hmih\mathcal{B}kvm + Hkmi\mathcal{B}hv$. In view of (1.23) and (1.20), we get
- $(1.24) \quad K_{mk^i} \ {}_h \mathcal{B}_j v^m y^j = 0 \ .$

Using [(1.6)a] in above equation and since $K_{mk}{}^{i}{}_{h} \neq 0$ and $y^{j} \neq 0$, we get (1.25) $\mathcal{B}_{j}v^{m} = 0$.

The main objective of this paper is studing of the M-projective curvature tensor in $GBK - 5RF_n$. By utilizing the Lie-derivative, we are able to derive new identities and relations that provide deeper insights into the geometric properties of $BK - 5RF_n$.

2. A Lie-derivative of M-projective curvature tensor in $GBK - 5RF_n$

Let us explore a generalized $\mathcal{B}K$ –fifth recurrent space that Cartan's fourth curvature tensor $K_{jk}{}^{i}{}_{h}$ is defined as (1.10). Taking the Lie - derivative of both sides of (1.18) and using [(1.5)c], we get

(2.1) LvWjki h = LvRjki h - 16L(gjkRhi - gjhRki).

By applying (1.3) on the M-projective curvature tensor $W_{jk}{}^{i}{}_{h}$ and Cartan's third curvature tensor $R_{jk}{}^{i}{}_{h}$, using the result equations and (1.25) in (2.1), we get

(2.2) $v_m \mathcal{B}_m W_{jki} h = v_m \mathcal{B}_m R_{jki} h$, if the tensor $g_{jk} R_h^i$ is symmetric in its two lower indices h and k.

Taking Berwald covariant derivative of fourth order for (2.2) with respect to x^n , x^l , x^q and s^s , using (1.25) and since $v^m \neq 0$, we get

(2.3) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mWjki\ h = \mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mRjki\ h$, if

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

 $(2.4) g_{jk}R_h{}^i = g_{jh}R_k.$

Thus, we conclude

Theorem 2.1. In $GBK - 5RF_n$, the Berwald covariant derivative of fifth order for Mprojective curvature tensor $W_{jk}{}^i{}_h$ and Cartan's third curvature tensor $R_{jk}{}^i{}_h$ are equal if the tensor $g_{jk}R_h{}^i{}$ is symmetric in its two lower indices h and k.

Using [(1.5)c] in (1.13) and using the result equation in (2.3), we get

(2.5) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mW$ jki h = asqlnmRjki h,

Let as assume $_{jk}^{i}h = R_{jk}^{i}h$, then above equation can be written as

(2.6) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}m\mathcal{W}jki\ h = asqlnm\mathcal{W}jki\ h$,

Thus, we conclude

Theorem 2.2. In GBK - 5RF, the M-projective curvature tensor $W_{jk}{}^{i}{}_{h}$ behaves as fifth recurrent if it equals Cartan's third curvature tensor $R_{jk}{}^{i}{}_{h}$ [provided (1.14) and (2.4) hold].

Using [(1.7)b] in (2.1), we get

(2.7) LvWjkih = LvKjkih + LvCjsiHksh - 16L(gjkRhi - gjhRki).

By applying (1.3) on the M-projective curvature tensor W_{jk}^{i} h, Cartan's fourth curvature tensor

 K_{jk}^{i} and tensor $_{js}^{i}H_{k}^{s}$, then using the result equation (1.25) in (2.7), we get

(2.8) $vm\mathcal{B}mW_{jki}h = vm\mathcal{B}mK_{jki}h$, if and only if

 $(2.9) \qquad \mathcal{B}(C_{js^i}H_{k^sh})=0\;.$

Taking Berwald covariant derivative of fourth order for (2.8) with respect to x, l , x^q and x^s , using (1.25), we get

(2.10) $\mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_m \mathcal{W}_{jkl} h = \mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_m \mathcal{B}_m K_{jkl} h$.

Thus, we conclude

Theorem 2.3. In $GBK - 5RF_n$, the Berwald covariant derivative of fifth order for M-projective curvature tensor W_{jk^ih} and Cartan's fourth curvature tensor K_{jk^ih} are equal [provided (2.4) and (2.9)hold].

Using [(1.5)c] in (1.10) and using the result equation in (2.10), we get

(2.11) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mW$ jki $h = \alpha sqlnmK$ jki h,

Let as assume $^{-}_{jk}i_h = K_{jk}i_h$, then above equation can be written as

(2.12) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mWjkih = asqlnmWjkih$,

Thus, we conclude

Corollary 2.1. In GBK - 5RF, the M-projective curvature tensor $W_{jk}{}^{i}{}_{h}$ behaves as fifth recurrent if it equals Cartan's fourth curvature tensor $K_{jk}{}^{i}{}_{h}$ [provided (2.4) and (2.9) hold].

Using (2.4) in (2.7), we get

(2.13) LvWjkih = LvKjkih + LvCjsiHksh.

Using (1.3) and (1.25) in above equation, we get

(2.14) $\mathcal{B}_m W_{jki} h = \mathcal{B}_m K_{jki} h + \mathcal{B}_m C_{jsi} H_{ksh}$.

Multiplying above equation by y , using [(1.6)a], [(1.7)a] and [(1.8)c], we get

 $(2.15) \quad \mathcal{B}(W_{jk}{}^i{}_h y^j) = \mathcal{B}_m H_k{}^i{}_h \; .$

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

Taking Berwald covariant derivative of fourth order for (2.15) with respect to x^n , x^l , x^q and s, we get

(2.16) $\mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}(W_{jkl} h y_j) = \mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H_{klh}$.

Using (1.11) and [(1.5)c] in above equation, we get

(2.17) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}(W_{jki} hy_{j}) = \alpha sqlnmH_{kih}$,

Let as assume $_{jk}^{i}hy^{j} = H_{k}^{i}h$, then above equation can be written as

(2.18) $\mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}(W_{jkl} h y_j) = a_{sqlnm}(W_{jkl} h y_j)$,

Thus, we conclude

Theorem 2.4. In GBK - 5RF, the tensor ($W_{jk^ih}y^j$) behaves as fifth recurrent if it equals the h(v)-torsion tensor H_{k^ih} .

Multiplying (2.16) by y, using [(1.6)a] and [(1.8)a], we get

- (2.19) $\mathcal{B}_s\mathcal{B}_q\mathcal{B}_l\mathcal{B}_n\mathcal{B}(W_{jkl}\,hy_jy_k) = \mathcal{B}_s\mathcal{B}_q\mathcal{B}_l\mathcal{B}_n\mathcal{B}_mH_{hi}$. Using (1.12) in above equation, we get
- (2.20) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}(W_{jki}hy_{j}y_{k}) = a_{sqlnm}H_{hi}$, if and only if
- (2.21) $b_{sqln}(\delta_h^i F^2 y^i y_h) = 0.$

Let as assume $_{jk}^{-}hy^{j}y^{k} = Hh^{i}$, then equation (2.20) can be written as

(2.22) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}(Wjki\;hyjyk) = \alpha sqlnm(Wjki\;hyjyk)$,

Thus, we conclude

Theorem 2.5. In GBK - 5RF, the tensor ($W_{jk}{}^{i}{}_{h}y^{j}y^{k}$) behaves as fifth recurrent if it equals the deviation tensor $H_{h}{}^{i}$ [provided (2.21)holds].

Let the tensor $g_{jh}R_{k^i}$ is skew-symmetric in its two lower indices h and k, then the equation (2.1) can be written as

(2.23) $LvW_{jki} h = LvR_{jki} h - 13 L(g_{jk}R_{hi})$.

Using (1.3), (1.25) and (1.16) in above equation, we get

- (2.24) $\mathcal{B}_m W_{jki} h = \mathcal{B}_m R_{jki} h 13 g_{jk} \mathcal{B}_m R_h$. Using [(1.7)c] and [(1.9)b] in above equation, we get
- (2.25) $\mathcal{B}_m W_{jki} h = \mathcal{B}_m R_{jki} h 13 g_{jk} g_{jk} \mathcal{B}_m R_{jki} h$.

Using [(1.5)c,b] in above equation, we get

(2.26) $\mathcal{B}_m W_{jk}^i h = (1 - n_3) \mathcal{B}_m R_{jk}^i h$.

Taking Berwald covariant derivative of fourth order for above equation with respect to x^n , l, x^q and x^s , we get

- (2.27) $\mathcal{B}_s \mathcal{B}_q \mathcal{B}_t \mathcal{B}_n \mathcal{B}_m W_{jki} h = (1 n_3) \mathcal{B}_s \mathcal{B}_q \mathcal{B}_t \mathcal{B}_n \mathcal{B}_m R_{jki} h$. Which can be written as
- (2.28) $\mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_m (W_{jk}^i h (1 n_3)_{jk}^i h) = 0.$

Thus, we conclude

Theorem 2.6. In GBK - 5RF, the Berwald covariant derivative of fifth order for the tensor $(W_{jk}{}^{i}{}_{h} - (1 - {}^{n} - {}^{n} - {}^{n})R_{jk}{}^{i}{}_{h})$ is vanishing if the tensor $g_{jh}R_{k}{}^{i}$ is skew-symmetric in its two lower indices h and k.

Now, using (1.17) in (2.1), we get

(2.29) $LvR_{jki}h - 16L(g_{jk}R_{hi} - g_{jh}R_{ki}) = 0$.

Multiplying above equation by y^{j} , using (1.4), [(1.5)a] and [(1.7)a], we get

(2.30) LvHkih = 16L(ykRhi - yhRki).

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

Using (1.15), (1.3) and (1.25) in above equation, we get

(2.31) $\mathcal{B}mHkih = 16 - (yk\mathcal{B}mRhi - yh\mathcal{B}mRk)$.

Taking Berwald covariant derivative of fourth order for above equation with respect to

 x^n , x^l , x^q and s, and using [(1.6)b], we get

(2.32) $\mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}mHkih = \mathcal{B}s\mathcal{B}q\mathcal{B}l\mathcal{B}n\mathcal{B}m \left[16 \left(ykRhi - yhRki \right) \right].$

Thus, we conclude

Theorem 2.7. In $GBK - 5RF_n$, the Berwald covariant derivative of fifth order for h(v) –torsion tensor $H_k^{i_h}$ and the tensor $\begin{bmatrix} 1_6 (y_k R_h^i - y_h R_k^i) \end{bmatrix}$ are equal if the M-projective curvature tensor collineation along a vector field $v^i(x)$.

Using (1.3), (1.25), (1.16) and [(1.5)f] in (2.29), we get

(2.33) $\mathcal{B}_m R_{jki} h - 16 (\partial_j y_k \mathcal{B}_m R_{hi} - \partial_j y_h \mathcal{B}_m R_k) = 0$.

Multiplying above equation by y^j , using [(1.5)j], [(1.6)a] and [(1.7)a], we get

- (2.34) $\mathcal{B}_m H_k^i h {}^1 6 (y_k \mathcal{B}_m R_h^i y_h \mathcal{B}_m R_k) = 0$. Multiplying above equation by y, using [(1.8)b], we get
- (2.35) $y[{}^{1}_{6} (y_k \mathcal{B}_m R_h^i y_h \mathcal{B}_m R_k^i)] = 0$. Which can be written as
- $(2.36) y_k \mathcal{B}_m R_h{}^i y_h \mathcal{B}_m R_k{}^i = 0.$

Taking Berwald covariant derivative of fourth order for above equation with respect to

 x^n , x^l , x^q and s, using [(1.6)b], we get

 $(2.37) \quad \mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}(y_k R_{h^i}) = \mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}_m(y_h R_{h^i}) \ .$

Thus, we conclude

Theorem 2.8. In $GBK - 5RF_n$, the Berwald covariant derivative of fifth order for the the tensor (y_kR_h) is symmetric in its two lower indices h and k if the M-projective curvature tensor collineation along a vector field $v^i(x)$.

In view of [Theorem 2.7] and [Theorem 2.8], we get

 $(2.38) \quad \mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H_k i_h = 0 \; .$

Thus, we conclude

Corollary 2.2. In $GBK - 5RF_n$, the Berwald covariant derivative of fifth order for h(v) –torsion tensor $H_{k^i h}$ is vanishing if the M-projective curvature tensor $W_{jk^i h}$ collineation along a vector field $v^i(x)$ [provided (2.37)holds].

In view of [Theorem 2.1] and [Theorem 2.3], we get

(2.39) $\mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}_m R_{jkl} h = \mathcal{B}_s \mathcal{B}_q \mathcal{B}_l \mathcal{B}_n \mathcal{B}_m K_{jkl} h$,

Thus, we conclude

Corollary 2.3 In $GBK - 5RF_n$, the Berwald covariant derivative of fifth order for the Cartan's third curvature tensor $R_{jk}{}^i{}_h$ and the Cartan's fourth curvature tensor $K_{jk}{}^i{}_h$ are equal [provided (2.4) and (2.9) hold].

3. Conclusions

This paper established new identities of the Lie derivative for the M-projective curvature tensor $W_{jk}^i{}_h$ in generalized fifth-order recurrent Finsler spaces. The authors established conditions under which the

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

Berwald covariant derivative of fifth order for the M-projective curvature tensor $W_{jk}{}^i{}_h$, Cartan's third curvature tensor $R_{jk}{}^i{}_h$ and Cartan's fourth curvature tensor $K_{jk}{}^i{}_h$ are equal. We proved that the M-projective curvature tensor $W_{jk}{}^i{}_h$, the tensors ${}^i{}_{jk}{}^i{}_h y^j$ and $W_{jk}{}^i{}_h y^j y^k$ behave as a fifth recurrent under specific conditions. Also, we introduced relationships between some tensors when the M-projective curvature tensor ${}^i{}_{jk}{}^i{}_h$ is collineation along a vector field $v^i(x)$. The Berwald covariant derivative of fifth order for the subtraction two tensors is vanishing under certain condition has been obtained.

This study advances our understanding of the Lie derivative's role in generalized fifth-order recurrent Finsler geometry, opening avenues for future research.

REFERENCES

- A. A. Abdallah, Study on the relationship between two curvature tensors in Finsler spaces, Journal of Mathematical Analysis and Modeling, 4(2), 112-120, (2023).
- A. A. Abdallah and B. Hardan, *P* –Third order generalized Finsler space in the Berwald sense, Bull. Pure Appl. Sci. Sect. E Math. Stat. 43E(1), 43–52, (2024).
- A. A. Abdallah and B. Hardan, Two results to clarify the relationship between
- P_{ijk}^h and R_{ijk}^h with two connections of third order in Finsler spaces, The Scholar Journal for Sciences & Technology, 2(4), 52 59, (2024).
- A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On certain generalized *BP* –birecurrent Finsler space, Journal of International Academy of Physical Sciences, 25(1), 63-82, (2021).
- F. A. Ahmed and A. A. Abdallah, The conditions for various tensors to be generalized \mathcal{B} –trirecurrent tensor, International Journal of Advanced Research in Science, Communication and Technology, 4(2), 511–517, (2024).
- M. Ali, M. Salman, F. Rahaman and N. Pundeer, On some properties of Mprojective curvature tensor in spacetime of general relativity, arXiv: 2209.12692v2, May, 1-17, (2023).
- A. M. AL-Qashbari, S. Saleh and I. Ibedou, On some relations of R-projective curvature tensor in recurrent Finsler space, Journal of Non-Linear Modeling and Analysis (JNMA), (China), Accepted, (2024).
- A. M. AL-Qashbari, A Note on some K^h -generalized recurrent Finsler space of higher order, Stardom Journal for Natural and Engineering Sciences (SJNES), 1, 69-93, (2023).
- A. M. AL-Qashbari and S. M. Baleedi, Study on generalized $\mathcal{B}K$ -5Recurrent Finsler space, Computational Mathematics and its Applications, 1(1), 009-020, (2023).

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

- A. M. AL-Qashbari and S. M. Baleedi, On Lie-derivative of M-projective curvature tensor and K-curvature inheritance in GBK- SRF_n , Acta. Universities Apuleius, 15825329, 76, 13-24, (2023).
- A. M. AL-Qashbari, A. A. Abdallah and S. M. Baleedi, A Study on the extensions and developments of generalized *BK* –recurrent Finsler space, International Journal of Advances in Applied Mathematics and Mechanics, 12(1), 38-45, (2024).
- A. M. AL-Qashbari, A. A. Abdallah and A. S. Saeed, On decomposition for curvature tensor field $K_{jk}{}^i{}_h$ in generalized $K_{(\mathcal{B})}$ -quod-recurrent space, Journal of International Academy of Physical Sciences, 28(3), 169-184.
- M. Atashafrouz and B. Najafi, On D-recurrent Finsler Metrics. Bull. Iran. Math. Soc. 47, 143-156, (2021).
- K. P. Ghadle, A. A. Navlekar and A. A. Abdallah, Special types of generalized recurrent spaces, Journal of Computer and Mathematical Sciences, 10(5), (2019), 972979.
- K. P. Ghadle, A. A. Navlekar and A. A. Abdallah, On \mathcal{B} –covariant derivative of first order for some tensors in different spaces, Journal of Mathematical Analysis and Modeling, 2(2), 30-37, (2021).
- K. P. Ghadle, A. A. Navlekar and A. A. Abdallah, Analysis for Cartan's second curvature tensor in Finsler space, International Journal of Advanced Research in Science, Communication and Technology, 2(3), 1-5, (2022).
- K. P. Ghadle, A. A. Navlekar, A. A. Abdallah and B. Hardan, On W_{jk^i} in generalized $\mathcal{B}P$ –recurrent and birecurrent Finsler space, AIP Conference Proceedings, 3087, 070001 (1-6), (2024).
- K. P. Ghadle, A. A. Navlekar, A. A. Abdallah and B. Hardan, On generalized recurrent Finsler spaces of fifth order in Berwald sense, International Journal of Physics and Mathematics, 6(2), 29-35.
- H. Gouin, Remarks on the Lie derivative in fluid mechanics, International Journal of Non-Linear Mechanics, 150, 1-16, (2023).
- N. Gruver, M. Finzi, M. Goldblum and A. Wilson, The Lie derivative for measuring learned equivariance, arXiv:2210.02984, Cornell University (New York), 1, 123,(2022).
- A. A. Hamoud, A. A. Navlekar, K. P. Ghadle and A. A. Abdallah, Decomposition for Cartan's second curvature tensor of different order in Finsler spaces, Nonlinear Functional Analysis and Applications, 27(2), 433-448, (2022).

ISSN: 2997-6898

Volume 13 Issue 1, January-March, 2025

Journal Homepage: https://ethanpublication.com/articles/index.php/E33,

Official Journal of Ethan Publication

- M. A. Opondo, Study of Projective curvature tensor $W_{jk}{}^{i}{}_{h}$ in bi-recurrent Finsler space, M. Sc. Dissertation, Kenyatta University, (Nairobi), (Kenya), (2021).
- E. Pak and G. Kim, Reeb Lie derivatives on real hyper surfaces in complex hyperbolic two-plane Grass maniacs, Faculty of Sciences and Mathematics, University of Nis,(Serbia), Filo mat 37:3, 915-924, (2023).