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Abstract

The study evaluated the accuracy and performance of SARIMA Models in Forecasting Inflation Rates. The study
applied the Box-Jenkins methodology to build an ARIMA model for forecasting Nigeria's monthly inflation rates
from November 2009 to October 2024. The results indicated that the ARIMA (3,2,1) (2,0,1) [12] model provided
the best fit for predicting monthly inflation rates in Nigeria. This model was then used to forecast inflation from
June 2024 to January 2026. The forecasted results are expected to provide policymakers with valuable insights
for designing more effective economic and monetary policies, especially to address the forecasted rise in inflation
rates in the first quarter of 2026, assuming all other factors remain unchanged.
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Introduction

Inflation remains one of the most significant economic challenges faced by Nigeria, influencing a range of
macroeconomic factors including purchasing power, economic stability, and investment decisions. As of
recent years, Nigeria's inflation rate has experienced considerable fluctuations, driven by factors such as
volatile oil prices, currency depreciation, and structural issues within the economy. According to the
Central Bank of Nigeria (CBN), inflation has consistently been a concern, with rates reaching double digits
in many instances, thereby affecting the standard of living for citizens and complicating the policy-making
process. With inflationary pressures on the rise, accurate forecasting becomes vital for effective monetary
and fiscal policies. Tuaneh and Essi (2017) reported that the value of the GDP is not very meaningful with
consistent inflationary pressure

Several authors, Tuaneh (2018), Tuaneh and Okidim (2019), Tuaneh and Essi (2021), Tuaneh et al (2021),
and also Tuaneh and Doodei (2025), have studied inflation rate but in relationship with other variables.
also, despite several attempts to predict inflation using various econometric models, previous studies in
Nigeria have often encountered limitations, particularly in accounting for both non-seasonal and seasonal
patterns inherent in inflation data. Many studies have primarily relied on simpler ARIMA models that
overlook the seasonal aspects of inflation, leading to suboptimal forecasts. Furthermore, the lack of
consistency and reliability in inflation forecasts has hindered policymakers' ability to make well-informed
decisions.

This study seeks to address the existing gap by evaluating the accuracy and performance of SARIMA
(Seasonal Autoregressive Integrated Moving Average) models, with a particular focus on the ARIMA (2,2,3)
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(2,0,0)[12] model, in forecasting inflation in Nigeria from 2009 to 2024. By incorporating both non-
seasonal and seasonal components, SARIMA models offer a more robust approach to capturing the
underlying patterns of inflation, including potential annual cycles. This is crucial given the influence of
factors such as seasonality in food prices, global commodity shocks, and annual policy adjustments on
inflation.

Previous studies on the application of SARIMA models in modelling and forecasting Nigeria’s inflation
rates(Otu, Osuji, Opara, Mbachu, Theagwara, 2014, Havi, 2023) have been limited by the inability to
effectively capture the seasonal nature of inflation, often leading to inaccurate predictions that fail to
inform effective policy decisions. With inflation remaining volatile and unpredictable, there is a clear need
for more accurate forecasting models that integrate both trend and seasonal components. Therefore, the
problem this study seeks to address is the inadequacy of existing models in providing reliable inflation
forecasts that reflect both short-term and long-term dynamics in Nigeria's economy. Therefore, the study
will evaluate the effectiveness of the SARIMA model in forecasting inflation in Nigeria, assess the accuracy
of the SARIMA model by comparing the error metrics (ME, RMSE, MAE, MPE, MAPE, MASE) with other
traditional forecasting models, identify the seasonal and non-seasonal components contributing to
inflation dynamics in Nigeria, using the SARIMA model and provide policy recommendations based on the
model's forecasting performance and its potential for improving inflation management in Nigeria.

3.0 Methodology

3.1 Data source for the study.

The study used data on inflation rate extracted from the Central Bank of Nigeria (CBN) website
www.cbn.ng. The data was extracted from 1st January 1991 to 31st May 2024. The statistical software is
r-studio. This is powerful statistical software that allows users to analyze, manage and produce graphical
displays of data.

3.2 Model Specification

A model is a simplified system used to simulate certain aspects of the real economy. The method specified
for this study is the Box-Jenkins approach (Box and Jenkins, 1976), which incorporates the Autoregressive
Integrated Moving Average (ARIMA) model. The ARIMA model seeks to identify patterns in historical data
and decomposes it into three main components and they include ; an autoregressive (AR) process, which
reflects the memory of past events; an integrated (I) process, which accounts for stabilizing or making the
data stationary, thus making it valid for forecasting; and a moving average (MA) process, which models the
forecast error(Deebom, Essi & Amos,2021). The longer the historical data, the more accurate the forecast,
as the model learns over time (Out. et al, 2014). These components combine and interact with each other,
eventually forming the ARIMA(p,d,q) model. The first component, the AR term, uses the p lags of a time
series to improve the forecast. The AR part of ARIMA indicates that the evolving variable of interest is
regressed on its own lagged (previous) values. An AR(p) model is expressed in the following form, as

shown in equation 1: yt = p+ Biye1 + B2ye2 +...+ Bpyep+ Be  (3.1)
P
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= + iyt-i+t

i=1

Where;
yt = The response (dependent) variable being forecasted at time t
ye-1 = The lag of the series or the response variable at time lag
(Stimulus)
@A1,..., Bp = Are the coefficient of lag that the model estimates
1 = Isthe intercept term also estimated by the model
Ble = Error term at time t

This equation demonstrates that the forecasted value of inflation at time ttt depends on its value in the
previous period and a constant. The second component is the integrated stochastic process. A time series
is said to be integrated of the first order, I(1), if it must be differenced once to make it stationary. In general,
if a time series must be differenced ddd times to become stationary, it is said to be integrated of order ddd,
denoted as I(d) (Gujarati, 2003).

Similarly, the third component, the MA(q) model, uses the q lags of forecast errors to improve the forecast.
The MA part indicates that the regression error is a linear combination of error terms whose values
occurred both contemporaneously and at various points in the past. An MA(q) model has the form shown
in equation 2.

yt = Bo+ B1lle1 + B2lle2 + ... + Bqlleq + Pt (3.2)

q

= Do+@ B+

i=1

Where: yt = The response (dependent) variable being forecasted at time t
Bo = The constant mean of the process

B1, B2, ..Bq = The coefficient to be estimated

Ple = is the error term at time t

Plt-1, Ple-2, ..., Plt-q = the error in previous time that are incorporated in the response y:.

This equation indicates that y at time t is equal to a constant plus a moving average of the current and past
white noise error terms. However, if no differencing is required to make the series stationary, then an
ARMA model is generated with d equal to zero. The autoregressive moving average (ARMA) model refers
to a model with p autoregressive terms and q moving average terms. An ARMA(p, q) model is stationary if
the series is stationary, as shown in equation 3.

Y=g+ Il ay,+ Il BiE (3.3)

To create an ARIMA model, we begin by combining or adding both the autoregressive (AR) process, the
moving average (MA) process and the integrated part (I) together as shown in equation

(3.4)

yt= W+ B+ Piye1 + P2ye2 +...+ Ppyep + B 10e1 + B 2Be2 +...4 Bglltq (3.4)
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ye=01+2c+ ip:lth—i + qj:ljt—j Ply:=Pla Ytz(l—B)dYt

The ARIMA (p,d,q) model can be specified using the backshift operator as:
A(B)(1-B)Y.=A(B) @, ((3.5)

Similarly, the SARIMA (Seasonal Autoregressive Integrated Moving Average) model is a time series
forecasting model that extends the ARIMA model by explicitly modeling seasonality in the data. SARIMA is
particularly useful for datasets that show seasonal patterns or trends over time. The general form of the
SARIMA model is written as:

Bp(B5). (1 - B5)PYe= O(F5)et (3.6) Where:

Yt is the time series(inflation Rates) f is the backshift operator kYt = Y¢-k s is the length of the seasonal
period. D is the number of seasonal differences.

p is the number of seasonal autoregressive terms.

Q is the number of seasonal moving average terms.

&t the white noise (error term).

Similarly, the SARIMA model also sometimes referred to as the Multiplicative Seasonal Autoregressive
Integrated Moving Average model, is denoted as ARIMA(p,d,q)(P,D,Q)S. The corresponding lag form of the
model is:

B(L)(LS)(1 - L)4(1 - LS)Pyt = O(L)I(L)et

(3.7)

This model includes the following AR and MA characteristic polynomials in L of order p and q respectively:
O(L)=1-0Q1L - @2L% - --- - Qp-1Lr-1 - PpLP

(L)=1-601L-602L2----60qg-1L11-06q L1
Also, seasonal polynomial functions of order p and q respectively as represented below:
(L) =1-@l1LS - 92 L2S — - = @P— 1L(P-1)S — P LPS
(L)=1-91L5-92 L -+ =9Q -1 L@-DS - 9Q LS

Where: {y } - the observable time series

{et} -white noise series

p,d,q - order of non-seasonal AR, differencing and non-seasonal MA respectively
P,D,Q- order of seasonal AR, differencing and seasonal MA respectively L-lag operator Lyt = yt-k
S-seasonal order for example S=12 for monthly data 3.4 SARIMA model Estimation Procedures:

1. Stationarity Check: Ensure the series is stationary, either by differencing or using transformations.
2. Seasonality Identification: Identify if the data exhibits seasonal patterns (e.g., using
autocorrelation plots or seasonal decomposition).

3. Model Selection: Choose the appropriate values for p, d, q, P, D, Q, and s using techniques such as
grid search, ACF/PACF plots, or criteria like AIC/BIC.

4, Model Fitting: Fit the SARIMA model to the data using software libraries (e.g., stats models in
Python).
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5. Forecasting: Use the fitted model to make forecasts.

3.3 SARIMA Model Selection

To test whether the series meet the stationarity condition—which denotes time invariant mean, variance,
and co-variance—is the first step in creating the SARIMA model. Finding the orders p, q, P, and Q can be
aided by visualizing the patterns of the ACF and PACF. These give an idea of the seasonal and non-seasonal
lags by using the data on internal correlation between time series observations made at various intervals.
At the non-seasonal and seasonal levels, respectively, the ACF and PACF both exhibit spikes and cutoffs at
lag k and lag ks. The number of notable spikes indicates the model's order. Shumway and Stoffer (2006)
state that Table 1 below illustrates the behavior of ACF and PACF that were taken from AIDOO (2011).
Table 1 Behavior of ACF and PACF for seasonal and Non-seasonal ARMA(p,q)

Estimato AR(p) MA(q) ARMA(p,q)
r
ACF Tails off at lag k cuts off after lag q Tails off
Non- K=1,2,3,...
seasonal PACF Cuts off afterlagp  Tails off at lags k Tails off
ARMA(p,q) k=1,2,3,..
AR(P)s MA(Q)s ARMA(P,Q)
S
ACF Tails off at lag ks cuts off afterlag Qs Tails off at ks
pureseasonal K=1,2,3,...
ARMA(p,q) PACF Cuts off after lag Ps  Tails off at lags ks Tails off at ks
k=1,2,3,...

Source: Shumway and Stoffer (2006) cited in Aidoo (2016).

The Maximum Likelihood approach is used to estimate the parameters of the various models that the ACF
and PACF may produce. The model deemed most suitable is the one with the lowest AIC and BIC selection
criterion values. Relative diagnostic checking is the final step in the model selection process; if the model
passes these tests, it can be used for forecasting.

Results
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Figure 1: Time plot for the data from 2009 to 2024
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Figure 2: Time plot for Seasonality Check of the Inflation rates from 2009 to 2024
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Figure 5: ACF Plots on the second differenced Inflation rates from 2009 to 2024
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Figure 6: PACF Plots on the second differenced Inflation rates from 2009 to 2024
Table 2: Descriptive Statistics

Variabl—Mindst Media—Mea—3rd Max—Variane—std skewnes—Kurtest
e Qu n n Qu e S S
Intlatio [ 8.0 [11.2 12.70 [13.6 423 [1.21 [4.720 423 [1.214 4720
n Rates [0 7] 0 5 4 5

The results in table 2 shows the descriptive statistics. The mean is 13.60, variance is 17.933, standard
deviation is 4.235, skewness 1.2139 and kurtosis is 4.720 respectively. This simply the Inflation Rates
series is skewed to the right while the kurtosis seems to have flat tail.
Table 3: Augmented Dickey-Fuller Unit Root Test

VARIABL Augmented Dickey-Fuller Test

ES Level Lag First Differ Lag Second Lag RM order order Differ order K
Inflation - 5 - 5 - 5 102)
Rate 0.15163(0. 4.314(0.09 4.6204(0.0
99 2) 1)
Table 3 shows the results for the augmented dickey-fuller unit root test. The results show that the series
is stationary at second difference with an estimated statistic of -4.6204(0.01)
Table 4. Tentative SARIMA Models

SARIMA Models Log-
Likelihood
ARIMA(2,2,2)(1,0,1)[12] : -366.8428
ARIMA(0,2,0) :-302.7963
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ARIMA(1,2,0)(1,0,0)[12] :-346.8572
ARIMA(0,2,1)(0,0,1)[12] :-318.9219
ARIMA(2,2,2)(0,0,1)[12] :-331.8437
ARIMA(2,2,2)(1,0,0)[12] :-363.1251
ARIMA(2,2,2)(2,0,1)[12] :-371.9795
ARIMA(2,2,2)(2,0,0)[12] :-371.7642
ARIMA(2,2,2)(2,0,2)[12] :-375.7874
ARIMA(2,2,2)(1,0,2)[12] :-376.7413
ARIMA(2,2,2)(0,0,2)[12] :-329.6811
ARIMA(1,2,2)(1,0,2)[12] :-371.123
ARIMA(2,2,1)(1,0,2)[12] :-378.7375
ARIMA(2,2,1)(0,0,2)[12] :-331.4079
ARIMA(2,2,1)(1,0,1)[12] : -368.6659
ARIMA(2,2,1)(2,0,2)[12] :-377.9988
ARIMA(2,2,1)(0,0,1)[12] :-333.5211
ARIMA(2,2,1)(2,0,1)[12] :-374.0075
ARIMA(1,2,1)(1,0,2)[12] : -364.7487
ARIMA(2,2,0)(1,0,2)[12] :-372.2845
ARIMA(3,2,1)(1,0,2)[12] :-379.598
ARIMA(3,2,1)(0,0,2)[12] :-330.0165
ARIMA(3,2,1)(1,0,1)[12] :-367.5792
ARIMA(3,2,1)(2,0,2)[12] :-378.9257
ARIMA(3,2,1)(0,0,1)[12] :-332.1485
ARIMA(3,2,1)(2,0,1)[12] :-389.1511
ARIMA(3,2,1)(2,0,0)[12] : Inf
ARIMA(3,2,1)(1,0,0)[12] :-363.1209
ARIMA(3,2,0)(2,0,1)[12] :-377.4537
ARIMA(4,2,1)(2,0,1)[12] :-375.0066
ARIMA(3,2,2)(2,0,1)[12] :-389.743
ARIMA(3,2,2)(1,0,1)[12] :-365.771
ARIMA(3,2,2)(2,0,0)[12] : Inf
ARIMA(3,2,2)(2,0,2)[12] : Inf
ARIMA(3,2,2)(1,0,0)[12] :-361.9868
ARIMA(3,2,2)(1,0,2)[12] :-378.0651
ARIMA(4,2,2)(2,0,1)[12] :-388.78
ARIMA(3,2,3)(2,0,1)[12] : Inf
ARIMA(2,2,3)(2,0,1)[12] : Inf
ARIMA(4,2,3)(2,0,1)[12] : Inf

Re-fitting  the  best  model(s) without
approximations...
ARIMA(3,2,2)(2,0,1)[12] : Inf
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The results from re-fitting the best model(s) without approximations show that ARIMA (3,2,2) (2,0,1)[12]
has an "Inf" value, which means the fitting process failed or had numerical problems. This may imply
overfitting or an issue with the model's parameter limits. In contrast, the ARIMA

(3,2,1) (2,0,1)[12] model produced a valid output with a log-likelihood of 177.73 and an AIC of 339.47,
making it the best model compared to the others. Thus, this model is chosen as the best one. Additionally,
the coefficients of the ARIMA(3,2,1)(2,0,1)[12] model show the connection between prior values of the
series (the AR term -0.5440 implies that the first lag has a negative effect on the current value), past errors
(the MA term 0.4427 indicates a positive relationship between the first lag of the error term and the series),
and seasonal factors (SAR and SMA terms of -0.0156 and -0.4839 show the effect of seasonal components
during the first seasonal period). The standard errors of these coefficients imply that the estimates are
quite accurate. Nevertheless, the Model Selection indicates that ARIMA (2,2,3)(2,0,0)[12] and
ARIMA(3,2,2)(2,0,0)[12] both had similar AIC, AlICc, and BIC values, but neither surpassed the
ARIMA(3,2,1)(2,0,1)[12] model, making this one the top choice. Furthermore, ARIMA(4,2,1)(2,0,0)[12] had
a slightly poorer AIC of -337.58 and displayed higher MAE and RMSE values, thus making it a less attractive
option.

For the model diagnostic tests, the Training set error measures include ME, RMSE, MAE, MAPE, ACF1. It
was discovered that ARIMA (3,2,1)(2,0,1)[12] yielded the most favorable training set errors with the
lowest ME (mean error), RMSE (root mean squared error), MAE (mean absolute error), and MAPE (mean
absolute percentage error), indicating it fits the data most closely. Additionally, the ACF1 (first-order
autocorrelation) values are low, suggesting that the model's residuals behave well and that the model has
effectively captured the time series structure. In comparison, ARIMA (2,2,3)(2,0,0)[12] and
ARIMA(3,2,2)(2,0,0)[12] also performed well in terms of error metrics but not as effectively as
ARIMA(3,2,1)(2,0,1)[12]. Regarding the convergence of the best model, the log-likelihood value of 177.73
for ARIMA (3,2,1)(2,0,1)[12] confirms that the model explains the data effectively. The relatively low
sigma”2 of 0.008556 indicates that the residual variance is limited, suggesting a good fit to the inflation
data.

Conclusion

The ARIMA models applied to the inflation time series data show that different model types give similar fit
and error results. Among the models evaluated ARIMA(2,2,3)(2,0,0)[12],
ARIMA(3,2,2)(2,0,0)[12],ARIMA(3,2,1)(2,0,1)[12],andARIMA(4,2,1)(2,0,0)[12],the
ARIMA(3,2,1)(2,0,1)[12] model had the lowest AIC, AIC and BIC values, showing it is the simplest model
among those analyzed. Regarding training set error metrics, all models showed similar performance with
low values for the mean error (ME), root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). The ARIMA (3,2,1) (2,0,1) [12] model had the lowest RMSE and MAE,
indicating it offers the most precise fit for the data provided. Moreover, its ACF1 value suggests that the
residuals of this model display very low autocorrelation, which further confirms its suitability for the
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inflation series. The ARIMA (3,2,1) (2,0,1)[12] model is the best at capturing the key inflation trends with
little error and a sensible level of complexity. It can be regarded as the optimal model for predicting
inflation in this situation
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