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  Abstract   
The study evaluated the accuracy and performance of SARIMA Models in Forecasting Inflation Rates. The study 
applied the Box-Jenkins methodology to build an ARIMA model for forecasting Nigeria's monthly inflation rates 
from November 2009 to October 2024. The results indicated that the ARIMA (3,2,1) (2,0,1) [12] model provided 
the best fit for predicting monthly inflation rates in Nigeria. This model was then used to forecast inflation from 
June 2024 to January 2026. The forecasted results are expected to provide policymakers with valuable insights 
for designing more effective economic and monetary policies, especially to address the forecasted rise in inflation 
rates in the first quarter of 2026, assuming all other factors remain unchanged.  
 
Key Words:  Accuracy, Evaluation, Forecasting, Performance, & Inflation Rates     

 

Introduction  

Inflation remains one of the most significant economic challenges faced by Nigeria, influencing a range of 

macroeconomic factors including purchasing power, economic stability, and investment decisions. As of 

recent years, Nigeria's inflation rate has experienced considerable fluctuations, driven by factors such as 

volatile oil prices, currency depreciation, and structural issues within the economy. According to the 

Central Bank of Nigeria (CBN), inflation has consistently been a concern, with rates reaching double digits 

in many instances, thereby affecting the standard of living for citizens and complicating the policy-making 

process. With inflationary pressures on the rise, accurate forecasting becomes vital for effective monetary 

and fiscal policies. Tuaneh and Essi (2017) reported that the value of the GDP is not very meaningful with 

consistent inflationary pressure   

Several authors, Tuaneh (2018), Tuaneh and Okidim (2019), Tuaneh and Essi (2021), Tuaneh et al (2021), 

and also Tuaneh and Doodei (2025), have studied inflation rate but in relationship with other variables. 

also, despite several attempts to predict inflation using various econometric models, previous studies in 

Nigeria have often encountered limitations, particularly in accounting for both non-seasonal and seasonal 

patterns inherent in inflation data. Many studies have primarily relied on simpler ARIMA models that 

overlook the seasonal aspects of inflation, leading to suboptimal forecasts. Furthermore, the lack of 

consistency and reliability in inflation forecasts has hindered policymakers' ability to make well-informed 

decisions.  

This study seeks to address the existing gap by evaluating the accuracy and performance of SARIMA 

(Seasonal Autoregressive Integrated Moving Average) models, with a particular focus on the ARIMA (2,2,3) 
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(2,0,0)[12] model, in forecasting inflation in Nigeria from 2009 to 2024. By incorporating both non-

seasonal and seasonal components, SARIMA models offer a more robust approach to capturing the 

underlying patterns of inflation, including potential annual cycles. This is crucial given the influence of 

factors such as seasonality in food prices, global commodity shocks, and annual policy adjustments on 

inflation.  

Previous studies on the application of SARIMA models in modelling and forecasting Nigeria’s inflation 

rates(Otu, Osuji, Opara, Mbachu, Iheagwara, 2014, Havi, 2023)  have been limited by the inability to 

effectively capture the seasonal nature of inflation, often leading to inaccurate predictions that fail to 

inform effective policy decisions. With inflation remaining volatile and unpredictable, there is a clear need 

for more accurate forecasting models that integrate both trend and seasonal components. Therefore, the 

problem this study seeks to address is the inadequacy of existing models in providing reliable inflation 

forecasts that reflect both short-term and long-term dynamics in Nigeria's economy. Therefore, the study 

will evaluate the effectiveness of the SARIMA model in forecasting inflation in Nigeria,  assess the accuracy 

of the SARIMA model by comparing the error metrics (ME, RMSE, MAE, MPE, MAPE, MASE) with other 

traditional forecasting models,  identify the seasonal and non-seasonal components contributing to 

inflation dynamics in Nigeria, using the SARIMA model and provide policy recommendations based on the 

model's forecasting performance and its potential for improving inflation management in Nigeria.  

3.0  Methodology  

3.1  Data source for the study.  

The study used data on inflation rate extracted from the Central Bank of Nigeria (CBN) website 

www.cbn.ng. The data was extracted from 1st January 1991 to 31st May 2024. The statistical software is 

r-studio. This is powerful statistical software that allows users to analyze, manage and produce graphical 

displays of data.   

3.2  Model Specification   

A model is a simplified system used to simulate certain aspects of the real economy. The method specified 

for this study is the Box-Jenkins approach (Box and Jenkins, 1976), which incorporates the Autoregressive 

Integrated Moving Average (ARIMA) model. The ARIMA model seeks to identify patterns in historical data 

and decomposes it into three main components and they include ; an autoregressive (AR) process, which 

reflects the memory of past events; an integrated (I) process, which accounts for stabilizing or making the 

data stationary, thus making it valid for forecasting; and a moving average (MA) process, which models the 

forecast error(Deebom, Essi & Amos,2021). The longer the historical data, the more accurate the forecast, 

as the model learns over time (Out. et al, 2014). These components combine and interact with each other, 

eventually forming the ARIMA(p,d,q) model. The first component, the AR term, uses the p lags of a time 

series to improve the forecast. The AR part of ARIMA indicates that the evolving variable of interest is 

regressed on its own lagged (previous) values. An AR(p) model is expressed in the following form, as 

shown in equation 1: yt = µ + 1 yt-1 + 2 yt-2  +… +  p yt-p + t      (3.1)                                     
P 
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= + i yt−i + t  
i=1 
Where;    

yt      =   The response (dependent) variable being forecasted at time t   

yt-1      =   The lag of the series or the response variable at time lag 

(Stimulus)   

1,…, p =   Are the coefficient of lag that the model estimates   

µ              =   Is the intercept term also estimated by the model   

t           =   Error term at time t  

This equation demonstrates that the forecasted value of inflation at time ttt depends on its value in the 

previous period and a constant. The second component is the integrated stochastic process. A time series 

is said to be integrated of the first order, I(1), if it must be differenced once to make it stationary. In general, 

if a time series must be differenced ddd times to become stationary, it is said to be integrated of order ddd, 

denoted as I(d) (Gujarati, 2003).  

Similarly, the third component, the MA(q) model, uses the q lags of forecast errors to improve the forecast. 

The MA part indicates that the regression error is a linear combination of error terms whose values 

occurred both contemporaneously and at various points in the past. An MA(q) model has the form shown 

in equation 2.  

yt   = βo+ β1 t-1 + β2 t-2 + … + βq t-q + t              (3.2)  
q 

=    0 + i t−i + t  
i=1 
Where: yt   = The response (dependent) variable being forecasted at time t   

β0   =  The constant mean of the process  

β1, β2, …βq   =  The coefficient to be estimated   

t   =  is the error term at time t   

t-1, t-2, …, t-q =  the error in previous time that are incorporated in the response yt.  

This equation indicates that y at time t is equal to a constant plus a moving average of the current and past 

white noise error terms. However, if no differencing is required to make the series stationary, then an 

ARMA model is generated with d equal to zero.  The autoregressive moving average (ARMA) model refers 

to a model with p autoregressive terms and q moving average terms. An ARMA(p, q) model is stationary if 

the series is stationary, as shown in equation 3.  

            (3.3)  

To create an ARIMA model, we begin by combining or adding both the autoregressive (AR) process, the 

moving average (MA) process and the integrated part (I) together as shown in equation  

(3.4)  

 yt = µ + t + 1yt-1 + 2yt-2 +…+ pyt-p + β 1 t-1 + β 2 t-2 +…+ βq t-q                                  (3.4)  
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yt = + t + ip=1 i yt−i + qj=1 j t−j yt = d yt =(1−B)d yt  

The  ARIMA  (p,d,q)  model  can  be  specified  using  the  backshift  operator  as:    

(B)(1−B)d Yt = (B) t                         ((3.5)  

Similarly, the SARIMA (Seasonal Autoregressive Integrated Moving Average) model is a time series 

forecasting model that extends the ARIMA model by explicitly modeling seasonality in the data. SARIMA is 

particularly useful for datasets that show seasonal patterns or trends over time.  The general form of the 

SARIMA model is written as:  

𝑃(𝛽𝑠). (1 − 𝛽𝑠)𝐷𝑌𝑡 = 𝛳(𝛽𝑠)𝜀𝑡                              (3.6) Where:  

 𝑌𝑡 is the time series(inflation Rates)  𝛽  is the backshift operator 𝛽𝑘𝑌𝑡 = 𝑌𝑡−𝑘 s is the length of the seasonal 

period. D is the number of seasonal differences.  

p is the number of seasonal autoregressive terms.  

Q is the number of seasonal moving average terms.  

𝜀𝑡 the white noise (error term).  

Similarly, the SARIMA model also sometimes referred to as the Multiplicative Seasonal Autoregressive 

Integrated Moving Average model, is denoted as ARIMA(p,d,q)(P,D,Q)S. The corresponding lag form of the 

model is:  

∅(𝐿)𝜑(𝐿𝑆)(1 − 𝐿)𝑑(1 − 𝐿𝑆)𝐷𝑦𝑡  = 𝜃(𝐿)𝜗(𝐿𝑆)𝜀𝑡                                                        

(3.7)  

This model includes the following AR and MA characteristic polynomials in L of order p and q respectively:  

∅(𝐿) = 1 − ∅1𝐿 − ∅2𝐿2 − ⋯ − ∅𝑝−1𝐿𝑝−1 − ∅𝑝𝐿𝑝  

    (𝐿) = 1 − 𝜃1𝐿 − 𝜃2 𝐿2 − ⋯ − 𝜃𝑞−1 𝐿𝑞−1 − 𝜃𝑞 𝐿𝑞  

Also , seasonal polynomial functions of order p and q respectively as represented below:  

(𝐿𝑆) = 1 − 𝜑1𝐿𝑆 − 𝜑2 𝐿2𝑆 − ⋯ − ∅𝑃− 1𝐿(𝑃−1)𝑆 − 𝜑𝑃 𝐿𝑃𝑆  

(𝐿𝑆) = 1 − 𝜗1 𝐿𝑆 − 𝜗2 𝐿2𝑆 − ⋯ − 𝜗𝑄 −1 𝐿(𝑄−1)𝑆 − 𝜗𝑄 𝐿𝑄𝑆  

Where: {𝑦 } - the observable time series  

{𝜀𝑡} -white noise series  

p,d,q – order of non-seasonal AR, differencing and non-seasonal MA respectively  

P,D,Q- order of seasonal AR, differencing and seasonal MA respectively L-lag operator 𝐿𝑘𝑦𝑡 = 𝑦𝑡−𝑘  

S-seasonal order for example S=12 for monthly data 3.4  SARIMA model Estimation Procedures:    

1. Stationarity Check: Ensure the series is stationary, either by differencing or using transformations.  

2. Seasonality Identification: Identify if the data exhibits seasonal patterns (e.g., using 

autocorrelation plots or seasonal decomposition).  

3. Model Selection: Choose the appropriate values for p, d, q, P, D, Q, and s using techniques such as 

grid search, ACF/PACF plots, or criteria like AIC/BIC.  

4. Model Fitting: Fit the SARIMA model to the data using software libraries (e.g., stats models in 

Python).  
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5. Forecasting: Use the fitted model to make forecasts.  

3.3   SARIMA Model Selection  

To test   whether the series meet the stationarity condition—which denotes time invariant mean, variance, 

and co-variance—is the first step in creating the SARIMA model. Finding the orders p, q, P, and Q can be 

aided by visualizing the patterns of the ACF and PACF. These give an idea of the seasonal and non-seasonal 

lags by using the data on internal correlation between time series observations made at various intervals.  

At the non-seasonal and seasonal levels, respectively, the ACF and PACF both exhibit spikes and cutoffs at 

lag k and lag ks. The number of notable spikes indicates the model's order. Shumway and Stoffer (2006) 

state that Table 1 below illustrates the behavior of ACF and PACF that were taken from AIDOO (2011).   

Table 1 Behavior of ACF and PACF for seasonal and Non-seasonal ARMA(p,q)  

  Estimato 

r  

AR(p)  MA(q)  ARMA(p,q)  

  ACF  Tails off at lag k  cuts off after lag q  Tails off  

Non- 

seasonal  

ARMA(p,q)  

  K=1,2,3,...      

PACF  Cuts off after lag p  Tails off at lags k  Tails off  

    k=1,2,3,...    

    AR(P)s  MA(Q)s  ARMA(P,Q) 

s  

  ACF  Tails off at lag ks  cuts off after lag Qs  Tails off at ks  

pureseasonal  

ARMA(p,q)  

  K=1,2,3,...      

PACF  Cuts off after lag Ps  Tails off at lags ks  Tails off at ks  

    k=1,2,3,...    

Source: Shumway and Stoffer (2006) cited  in Aidoo (2016).   

The Maximum Likelihood approach is used to estimate the parameters of the various models that the ACF 

and PACF may produce. The model deemed most suitable is the one with the lowest AIC and BIC selection 

criterion values. Relative diagnostic checking is the final step in the model selection process; if the model 

passes these tests, it can be used for forecasting.   

Results  
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Figure 1: Time plot for the  data from 2009 to 2024  

  
Figure 2:  Time plot for Seasonality Check of the  Inflation rates  from 2009 to 2024  
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Figure 3:   ACF Plots of Original Data on Inflation rates  from 2009 to 2024  

  
Figure 4:   ACF Plots  on  the differenced  Inflation rates  from 2009 to 2024  

 
Figure 5:   ACF Plots  on  the second differenced  Inflation rates  from 2009 to 2024  
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Figure 6:   PACF Plots on the second differenced  Inflation rates  from 2009 to 2024  

Table 2: Descriptive Statistics   

 Variabl Min 1st  Media Mea 3rd  Max  Varianc std  skewnes Kurtosi 

 e  Qu  n  n  Qu  e  s  s  

 Inflatio 8.0 11.2 12.70    13.6 4.23 1.21 4.720  4.23 1.214  4.720  

 n Rates  0     7  0     5  4  5  

The results in table 2 shows the descriptive statistics. The mean is 13.60, variance is   17.933, standard 

deviation is 4.235, skewness 1.2139 and kurtosis is 4.720 respectively. This simply the Inflation Rates 

series is skewed to the right while the kurtosis seems to have flat tail.  

Table 3: Augmented Dickey-Fuller  Unit Root Test  

 VARIABL Augmented Dickey-Fuller Test    

ES Level  Lag First Differ Lag Second Lag RM order order Differ order K  

 Inflation  - 5  - 5  - 5  1(2)  

 Rate   0.15163(0. 4.314(0.09 4.6204(0.0 

 99  2)  1)  

Table 3 shows the results for the augmented dickey-fuller  unit root test. The results show that the series 

is stationary at second difference with an estimated statistic of -4.6204(0.01)  

Table 4. Tentative SARIMA Models    

SARIMA Models                                 Log-  

 Likelihood   

 ARIMA(2,2,2)(1,0,1)[12]                    : -366.8428   

  
ARIMA(0,2,0)                                  : -302.7963   
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ARIMA(1,2,0)(1,0,0)[12]                    : -346.8572 
ARIMA(0,2,1)(0,0,1)[12]                    : -318.9219 
ARIMA(2,2,2)(0,0,1)[12]                    : -331.8437 
ARIMA(2,2,2)(1,0,0)[12]                    : -363.1251 
ARIMA(2,2,2)(2,0,1)[12]                    : -371.9795 
ARIMA(2,2,2)(2,0,0)[12]                    : -371.7642 
ARIMA(2,2,2)(2,0,2)[12]                    : -375.7874 
ARIMA(2,2,2)(1,0,2)[12]                    : -376.7413 
ARIMA(2,2,2)(0,0,2)[12]                    : -329.6811 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

ARIMA(1,2,2)(1,0,2)[12]                    : -371.123   
ARIMA(2,2,1)(1,0,2)[12]                    : -378.7375 
ARIMA(2,2,1)(0,0,2)[12]                    : -331.4079 
ARIMA(2,2,1)(1,0,1)[12]                    : -368.6659 
ARIMA(2,2,1)(2,0,2)[12]                    : -377.9988 
ARIMA(2,2,1)(0,0,1)[12]                    : -333.5211 
ARIMA(2,2,1)(2,0,1)[12]                    : -374.0075 
ARIMA(1,2,1)(1,0,2)[12]                    : -364.7487 
ARIMA(2,2,0)(1,0,2)[12]                    : -372.2845 
ARIMA(3,2,1)(1,0,2)[12]                    : -379.598   
ARIMA(3,2,1)(0,0,2)[12]                    : -330.0165 
ARIMA(3,2,1)(1,0,1)[12]                    : -367.5792 
ARIMA(3,2,1)(2,0,2)[12]                    : -378.9257 
ARIMA(3,2,1)(0,0,1)[12]                    : -332.1485 
ARIMA(3,2,1)(2,0,1)[12]                    : -389.1511 
ARIMA(3,2,1)(2,0,0)[12]                    : Inf   
ARIMA(3,2,1)(1,0,0)[12]                    : -363.1209 
ARIMA(3,2,0)(2,0,1)[12]                    : -377.4537 
ARIMA(4,2,1)(2,0,1)[12]                    : -375.0066 
ARIMA(3,2,2)(2,0,1)[12]                    : -389.743 
ARIMA(3,2,2)(1,0,1)[12]                    : -365.771 

  

  
ARIMA(3,2,2)(2,0,0)[12]                    : Inf 
ARIMA(3,2,2)(2,0,2)[12]                    : Inf 

  

  
ARIMA(3,2,2)(1,0,0)[12]                    : -361.9868 
ARIMA(3,2,2)(1,0,2)[12]                    : -378.0651 
ARIMA(4,2,2)(2,0,1)[12]                    : -388.78   
ARIMA(3,2,3)(2,0,1)[12]                    : Inf 
ARIMA(2,2,3)(2,0,1)[12]                    : Inf 
ARIMA(4,2,3)(2,0,1)[12]                    : Inf 

  

  

  

  

Re-fitting the best model(s) without 

approximations... 
  

ARIMA(3,2,2)(2,0,1)[12]                    : Inf   
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ARIMA(3,2,1)(2,0,1)[12]                    : -338.6423   
Best model: 

ARIMA(3,2,1)(2,0,1)[12] 
  

Residual Diagnostics  

 
Figure 7:   ACF  Residual Plot  

  
Figure 8:   Error of the Best model Plot   

  
Figure 9:   Forecast Plot   
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The results from re-fitting the best model(s) without approximations show that ARIMA (3,2,2) (2,0,1)[12] 

has an "Inf" value, which means the fitting process failed or had numerical problems. This may imply 

overfitting or an issue with the model's parameter limits. In contrast, the ARIMA  

(3,2,1) (2,0,1)[12] model produced a valid output with a log-likelihood of 177.73 and an AIC of 339.47, 

making it the best model compared to the others. Thus, this model is chosen as the best one. Additionally, 

the coefficients of the ARIMA(3,2,1)(2,0,1)[12] model show the connection between prior values of the 

series (the AR term -0.5440 implies that the first lag has a negative effect on the current value), past errors 

(the MA term 0.4427 indicates a positive relationship between the first lag of the error term and the series), 

and seasonal factors (SAR and SMA terms of -0.0156 and -0.4839 show the effect of seasonal components 

during the first seasonal period). The standard errors of these coefficients imply that the estimates are 

quite accurate. Nevertheless, the Model Selection indicates that ARIMA (2,2,3)(2,0,0)[12] and 

ARIMA(3,2,2)(2,0,0)[12] both had similar AIC, AICc, and BIC values, but neither surpassed the 

ARIMA(3,2,1)(2,0,1)[12] model, making this one the top choice. Furthermore, ARIMA(4,2,1)(2,0,0)[12] had 

a slightly poorer AIC of -337.58 and displayed higher MAE and RMSE values, thus making it a less attractive 

option.  

For the model diagnostic tests, the Training set error measures include ME, RMSE, MAE, MAPE, ACF1. It 

was discovered that ARIMA (3,2,1)(2,0,1)[12] yielded the most favorable training set errors with the 

lowest ME (mean error), RMSE (root mean squared error), MAE (mean absolute error), and MAPE (mean 

absolute percentage error), indicating it fits the data most closely. Additionally, the ACF1 (first-order 

autocorrelation) values are low, suggesting that the model's residuals behave well and that the model has 

effectively captured the time series structure. In comparison, ARIMA (2,2,3)(2,0,0)[12] and 

ARIMA(3,2,2)(2,0,0)[12] also performed well in terms of error metrics but not as effectively as 

ARIMA(3,2,1)(2,0,1)[12].  Regarding the convergence of the best model, the log-likelihood value of 177.73 

for ARIMA (3,2,1)(2,0,1)[12] confirms that the model explains the data effectively. The relatively low 

sigma^2 of 0.008556 indicates that the residual variance is limited, suggesting a good fit to the inflation 

data.  

  

Conclusion  

The ARIMA models applied to the inflation time series data show that different model types give similar fit 

and error results. Among the models evaluated ARIMA(2,2,3)(2,0,0)[12], 

ARIMA(3,2,2)(2,0,0)[12],ARIMA(3,2,1)(2,0,1)[12],andARIMA(4,2,1)(2,0,0)[12],the   

ARIMA(3,2,1)(2,0,1)[12] model had the lowest AIC, AIC and BIC values, showing it is the simplest model 

among those analyzed. Regarding training set error metrics, all models showed similar performance with 

low values for the mean error (ME), root mean square error (RMSE), mean absolute error (MAE), and mean 

absolute percentage error (MAPE). The ARIMA (3,2,1) (2,0,1) [12] model had the lowest RMSE and MAE, 

indicating it offers the most precise fit for the data provided. Moreover, its ACF1 value suggests that the 

residuals of this model display very low autocorrelation, which further confirms its suitability for the 
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inflation series. The ARIMA (3,2,1) (2,0,1)[12] model is the best at capturing the key inflation trends with 

little error and a sensible level of complexity. It can be regarded as the optimal model for predicting 

inflation in this situation  
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