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 Abstract:  
The logarithmic mean, often referred to as the log-mean, and has proven its utility across a wide 
spectrum of disciplines. In this paper, we explore novel applications and uncover its potential in 
defining the hyperbolic function. Moreover, we introduce a novel approach, which we term the 
"difference calculus," for deriving two forms analogous to those produced by differential calculus. 
Notably, our results using this calculus can yield discrete approximations to those obtained via 
differential calculus. Our discussions predominantly revolve around economic data, assuming positive 
and discrete variables unless dealing with differentiability-driven scenarios, where continuity and 
differentiability are presupposed. Additionally, we primarily employ natural logarithms for simplicity. 
Consider two positive variables, x0 and x1, representing a base period and a comparison period, 
respectively. We examine their differences, Δx10 = x1 - x0, and logarithmic differences, Δlogx10 = 
log(x1/x0) = logx1 - logx0. We denote infinitesimal changes as dx and dlogx, with the assumption of 
non-zero values for interesting outcomes, even when dealing with finite changes of dependent and 
independent variables in certain functions. 
  
Keywords: logarithmic mean, difference calculus, hyperbolic function, differential calculus, economic 
data.   

 
1. Introduction   
A logarithmic mean (hereafter log-mean) has very useful properties and has been applied over a broad 
range of fields [1, 3–6, 10 (see also footnotes 1 and 2 in it), 13, 20–24]. Nevertheless, there are more 
interesting and important areas to solve using this log-mean. For examples, it can be used to define the 
hyperbolic function. Moreover, whenever we employ the log-mean to decompose a function, we can easily 
derive two forms that are similar to those derived by the differential calculus, as we shall show later. We 
call this new method of derivation the “difference calculus.” The results derived by our calculus may 
produce discrete approximations to those by the differential calculus.   
In most of our discussions, most variables are assumed to be economic data, so that they are positive and 
discrete unless events that assume differentiability for their description are considered. (When we discuss 
these latter events, all variables are assumed to be continuous and differentiable.) In addition, for 
simplicity, they are usually not unity when we need to take their logarithms and only the natural logarithm 
is used.  
Consider any two positive variables, x0 and x1, where the subscript 0 represents a base period and 1 a 
comparison period. Their difference is written as Δx10 = x1 – x0, and the logarithmic difference as Δlogx10 = 
logx1 – logx0 = log(x1/x0). For differentials, that is, under an infinitesimal change, they are naturally written 
as dx and dlogx.  
For finite changes, the two differences above, which include those of dependent and independent variables 
for some functions, are also assumed to be non-zero so as to obtain an interesting result.  

https://ethanpub.online/Journals/index.php/E32


Statistics and Mathematical Research Journal 
ISSN: 2997-6898 | 
Volume 11 Issue 3, July-September, 2023 
Journal Homepage: https://ethanpub.online/Journals/index.php/E32  
Official Journal of Ethan Publication 
 

Statistics and Mathematical Research Journal 

P a g e 2 | 20 

 A log-mean is defined by  

.  (1) 

For clarity of expression, we write the log-mean (1) as L(x) to explain its basic properties and applications 
in the two sections below. To explain further useful properties, we need to write the two arguments for the 
log-mean explicitly. Hence, we write the log-mean (1) as L(x1, x0), as in Section 4. Our data are discrete, i.e., 
not continuous, so the integral representations of the log-mean, which may be interesting (see, for example, 
[8, 16, 18]), are discarded.  
The remainder of this paper is organized as follows. In Section 2, we briefly explain basic properties of the 
log-mean. Other properties of the log-mean, which includes the relationship between this mean and the 
usual three means (arithmetic, geometric, and harmonic) as well as the connection between this mean and 
hyperbolic functions, are explained in Section 4. In Section 3, we show its applications to two areas. First, 
we show decompositions for some functions using two forms: an additive form and a multiplicative form. 
Therein, the results derived by our difference calculus that may employ the log-mean are compared with 
those by the conventional difference calculus (or finite-difference calculus, hereafter “conventional 
calculus”) and the differential calculus. Second, we define a difference quotient that commonly makes the 
most of some log-means and show its close relationship to the differential quotient. (Remember that a form 
with a dependent variable given by the latter is usually called the differential equation as will be shown 
later.) All these aspects will make it clear that our difference calculus has many advantages over the 
conventional calculus, and some of the results produced by our difference calculus and quotient can be 
used as discrete approximations to those by the differential calculus and equation. Since a log-mean is 
defined for only positive variables, the scope of our difference calculus is somewhat restricted. To broaden 
the scope, we shall in Appendix A explain a method for handling non-positive variables; the remarks are 
conjectural as it has a few drawbacks. Conclusions are given in Section 5. 
2. Basic Properties of a Logarithmic Mean  
We briefly explain some basic properties of the log-mean (for its basic properties, see also [4–6, 8, 13, 20, 
21, 23]). This value is always positive and has the limit:  
lim 𝐿(𝑥) = 𝑥1 = 𝑥0.  
∆𝑥10→0 (2) 
This limit induces correspondence between the difference and differential calculi to be shown later. If 𝑥1⁄𝑥0 
is close to 1, it can be approximated by the three usual means: arithmetic, geometric, and harmonic (see 
Subsection 4.1). This property plays an important role, when we compare the results derived by the 
difference and conventional calculi (see below).  
Other useful properties are  

 (3)  

,  (4)  

  (5)  
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where A(x) = (x1+ x0)/2 is the arithmetic mean; and wit = xit/(∑𝑗 𝑥𝑗𝑡), the subscript t (t = 0, 1, …) represents 
a period, i (or j) the ith (or jth) commodity, and the summation is made over all commodities. Eq. (4) is 
often used in our difference calculus below.  
When a positive x approaches zero, we have the approximation that is called the log-approximation in this 
paper: log 𝑥 ≈ x − 1. This approximation yields (𝑥) ≈ 𝑥0 ≈ 𝑥1, because  

,  

wherein ∆ log 𝑥10 = log(𝑥1⁄𝑥0) = − log(𝑥0⁄𝑥1). See also Subsection 4.2.  
  
3. Applications  
3.1. Additive and Multiplicative Decompositions 
We present the difference or ratio of a function between two periods using two forms: an additive form of 
which all components are additive differences and a multiplicative form of which all components are 
logarithmic differences. We call the former an additive decomposition (AD) and the latter a multiplicative 
decomposition (MD). To derive an AD and an MD for some functions, we may employ three methods: the 
conventional, difference, and differential calculi. One may notice that the AD and MD derived by the first 
two calculi may relate to those derived by the last. We explain these in this order. (There are a few functions 
to which the first two methods cannot be applied.) While the conventional and differential calculi are well-
known, the difference calculus (i.e., our method) is less-known. Hence, we shall present many examples 
illustrating by our method (see also Subsection 3.2 and Appendixes A and B).  
Comparing the conventional and difference calculi, we find that the former can give an AD and/or an MD 
for only a few functions, and the latter can apply to many functions (see also Appendix B). We would like 
to emphasize that the difference calculus needs to employ a log-mean to derive an AD and/or an MD.  
3.1.1. Conventional Calculus 
This method relates to that called the “calculus of finite differences” [7, 17]. Most differences of 
independent variables for a function used by the latter are unity, as in [7], which implies ΔX10 = X1 – X0 = 
(X+1) – X = 1. Jordan [14], however, uses the following difference: ∆𝑋𝑡+1, = 𝑋𝑡+1 − 𝑋𝑡 = ℎ, in which h is 
independent of t and always constant. While the conventional calculus can quickly derive an MD for any 
multiplicative function, it can derive an AD for only those functions composed of two independent variables 
as shown in Examples 1* and 2* below. (For other functions, see our extended method given in Appendix 
B). In contrast, this method can easily derive an AD for any additive function, but it cannot derive an MD 
for that as shown in Example 3* below. These derivations are also explained in the relevant text books (for 
example, [12, 17]).  
1) Example 1*: Yt =XtZt.7  
The MD of this multiplicative function is easily obtained as follows:  
∆ log 𝑌10 = ∆ log 𝑋10 + ∆ log 𝑍10 .  
Each term on the right-hand side is X’s or Z’s contribution to ΔlogY10. The AD of this is  
𝑌1 − 𝑌0 = 𝑋1𝑍1 − 𝑋0𝑍1 + 𝑋0𝑍1 − 𝑋0𝑍0 = 𝑋1𝑍1 − 𝑋1𝑍0 + 𝑋1𝑍0 − 𝑋0𝑍0.  
∴ ∆𝑌10 = 𝑍1∆𝑋10 + 𝑋0∆𝑍10or ∆𝑌10 = 𝑍0∆𝑋10 + 𝑋1∆𝑍10.  (6)  
Each term on the right-hand sides in Eq. (6) is X’s or Z’s contribution to ΔY10. Whereas a convex combination 
of the two equations in Eq. (6) is also the AD, the arithmetic mean of those is often used as the AD, 
specifically  
∆𝑌10 = (𝑍)∆𝑋10 + 𝐴(𝑋)∆𝑍10.  (7)  
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For multiple multiplicative functions, such as Yt =WtXtZt, we are able to derive the AD for such functions 
using the more awkward procedures (see Appendix B for details). 
2) Example 2*: Yt =Xt/Zt, (𝑋𝑡 ≠ 𝑍𝑡).  
Because the MD is easily obtained, we omit it here. The AD is  

 

Comparing this decomposition with Eq. (6), we see that we have another AD. From its arithmetic mean, an 
AD similar to Eq. (7) is obtained:  

  (8) 

To obtain the AD of functions such as Yt =Wt/XtZt, we need to use the more awkward procedures presented 
in Appendix B. 
3) Example 3*: Yt =Xt + Zt.  
Since the AD for this additive function is quickly obtained, it is omitted. The MD of this is not obtained. 
4) Example 7*: 𝑌𝑡 = (𝑋𝑡)𝑡.  
The conventional method can give neither an AD nor an MD for this function.  
3.1.2. Difference Calculus 
The difference calculus is easily able to yield ADs and MDs for many functions. Some of our methods below 
can be found in [5, e.g., pp. 126–132]. See also [1, 9]. Our scope is, however, wider than these.  
1) Example 1: Yt =XtZt. 
Taking the logarithm of both sides produces the MD:  
∆ log 𝑌10 = ∆ log 𝑋10 + ∆ log 𝑍10.  
As ∆𝑥10 = (𝑥)∆ log 𝑥10, we quickly obtain its AD given by  
 ∆𝑌10 = ((𝑌)⁄𝐿(𝑋))∆𝑋10 + (𝐿(𝑌)⁄𝐿(𝑍))∆𝑍10.  (9)  
If we apply the log-approximation to three log-means in Eq. (9), we have two ADs in Eq. (6). In addition, 
using the approximation L(x) ≈G(x) ≈A(x) (see Subsection 4.1 for details), we find that Eq. (7) can be 
approximated by Eq. (9) (see also Appendix B).  
Even if one of the independent variables is non-positive, our method may be able to derive only its AD (see 
Appendix A). Our approach can easily decompose more complex functions such as Yt =XtZtWt and 
Yt=(Xt)2(ZtWt); see examples below and Appendix B.  
2) Example 2: Yt =Xt/Zt, (Xt≠Zt.).  
The difference calculus quickly produces the following MD and AD:  
∆ log 𝑌10 = ∆ log 𝑋10 − ∆ log 𝑍10,  
 ∆𝑌10 = ((𝑌)⁄𝐿(𝑋))∆𝑋10 − (𝐿(𝑌)⁄𝐿(𝑍))∆𝑍10.  (10)  
Using the approximation above, we also find that Eq. (8) can be approximated by Eq. (10).  
Comparing Example 1 with Example 2, Eq. (9) with Eq. (7), and Eq. (10) with Eq. (8), we see that our  
calculus yields more elegant forms than those derived by the conventional calculus. For the multiplicative 
functions composed of three or more independent variables, see Appendix B.  
3) Example 3: Yt =Xt + Zt.  
The AD is ∆𝑌10 = ∆𝑋10 + ∆𝑍10,  
from which, we can derive the following MD:  
∆ log 𝑌10 = (𝐿(𝑋)⁄𝐿(𝑌))∆ log 𝑋10 + (𝐿(𝑍)⁄𝐿(𝑌))∆ log 𝑍10. Note that the conventional calculus cannot derive 
this MD.  
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4) Example 4: Yt =Xt + WtZt.  
Letting Vt = WtZt, we deduce its AD and MD using Example 1.  
∆ log 𝑉10 = ∆ log 𝑊10 + ∆ log 𝑍10.  
∆𝑉10 = ((𝑉)⁄𝐿(𝑊))∆𝑊10 + (𝐿(𝑉)⁄𝐿(𝑍))∆𝑍10.  
Using the latter equation, we produce  
∆𝑌10 = ∆𝑋10 + ((𝑉)⁄𝐿(𝑊))∆𝑊10 + (𝐿(𝑉)⁄𝐿(𝑍))∆𝑍10.  
∆ log 𝑌10 = (𝐿(𝑋)⁄𝐿(𝑌))∆ log 𝑋10 + (𝐿(𝑉)⁄𝐿(𝑌))(∆ log 𝑊10 + ∆ log 𝑍10).  
The conventional calculus cannot derive either AD or MD. For the examples below, the same can also be 
stated.  
5) Example 5: Yt = exp(Xt).  
The MD and AD are  
∆ log 𝑌10 = 𝐿(𝑋)∆ log 𝑋10,  
  ∆𝑌10 = (𝑌)∆𝑋10.  
6) Example 6: Ht = ptlog(1/pt) =–ptlogpt > 0 and 0 < pt < 1.  
This function is frequently used in information theory. Here, we can employ two methods. Using qt = 1/pt 

> 1, we directly decompose this function (Case 1 below) and then decompose this by another method (Case 
2 below). As their ADs are easily obtained from the corresponding MD, we omit the details. The two derived 
MDs are naturally the same.  
Case 1: Ht = ptlogqt. 
Taking the logarithm of both sides yields the following, from which we can derive its MD. Note that logqt is 
always positive.  

,  

wherein ∆ log 𝑞10 = −∆ log 𝑝10 and 𝐿(log 𝑞) is defined by  
log log ∆ log 

,  
wherein  
Case 2: Ht = –ptlogpt.  
Squaring both sides and taking their logarithms, we have  
2log 𝐻𝑡 = 2 log 𝑝𝑡 + log Ψ ,  
where Ψ𝑡 = (log 𝑝𝑡)2. From this equation, we obtain  

 (log ) log 

where  
  

https://ethanpub.online/Journals/index.php/E32


Statistics and Mathematical Research Journal 
ISSN: 2997-6898 | 
Volume 11 Issue 3, July-September, 2023 
Journal Homepage: https://ethanpub.online/Journals/index.php/E32  
Official Journal of Ethan Publication 
 

Statistics and Mathematical Research Journal 

P a g e 6 | 20 

Recall that A(log 𝑞) = −𝐴(log 𝑝) > 0 and 𝐿(log 𝑝) cannot be defined. Thus,  
∆ log 1 

).  
7) Example 7:  
We show only two MDs obtained under two local (i.e., non-global) assumptions that exclude events such 
as (log 𝑋) = 0 and 𝐴(log 𝑌) = 0. (For cases including these events, see Appendix A.) Taking the logarithm of 
both sides leads to  
log 𝑌𝑡 = 𝐶𝑡 log 𝑋𝑡.  (11)  
Assumption1: Xt < 1.  
Here we have log 𝑋𝑡 < 0 (so log 𝑌𝑡 < 0). Squaring both sides of Eq. (11) and taking their logarithms, we obtain  
∆ log Φ10 = ∆ log Γ10 + ∆ log Ψ10,  
where  
Φ𝑡 = (log 𝑌𝑡)2,ΔΦ10 = (log 𝑌1 + log 𝑌0)(log𝑌1 − log 𝑌0) = 2𝐴(log 𝑌 Δ log 𝑌10, Γ𝑡 = 𝐶𝑡)2,ΔΓ10 = 2𝐴 𝐶)Δ𝐶10 = 
2𝐴(𝐶)𝐿(𝐶)∆ log 𝐶10, Ψ𝑡 = (log 𝑋𝑡)2,ΔΨ10 = 2𝐴(log 𝑋)Δ log 𝑋10.  
Note that three arithmetic means are nonzero. From these and the three log-means  

(Φ)  ΔΦ10⁄Δ log Φ10 , 𝐿(Γ)  ΔΓ10⁄Δ log Γ10 = 𝐿(𝐶2) = 𝐴(𝐶)𝐿(𝐶), and 𝐿(Ψ)  ΔΨ10⁄Δ log Ψ10, we derive the 
MD:  

.  (12)  

Assumption 2: Xt > 1.  
Because logXt > 0 and logYt > 0, we can further take the logarithm of both sides of Eq. (11) and obtain the  
MD:  

,  (13)  

where L(logY) and L(logX) are defined in a similar way to the above. In this case, we obtain  𝐿(Φ) = 𝐴(log 
𝑌)𝐿(log 𝑌)and 𝐿(Ψ) = 𝐴(log 𝑋)𝐿(log 𝑋).  
Thus, we may also use Eq. (12), because Eq. (12) degenerates in to Eq. (13) under Assumption 2.  
3.1.3. Differential Calculus  
Our difference calculus is closely related to the differential calculus. The log-mean yields  
∆ log 𝑥10 = ∆𝑥10⁄𝐿(𝑥).  (14)  
By contrast, the differential calculus produces  
d log 𝑥 = d𝑥⁄𝑥.  (15)  
Comparing  Eq.  (14)  with  Eq.  (15),  we  establish  correspondences  (a  finite-
change  variable  an infinitesimal-changevariable),  
∆ log 𝑥10 ↔ d log 𝑥, ∆𝑥10 ↔ d𝑥, and 𝐿(𝑥) ↔ 𝑥.  
The last correspondence follows from Eq. (2).  
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We show the ADs and MDs for some functions using the differential calculus. These may or may not induce 
the correspondences above. Wherever these correspondences are found, the AD or MD derived by the 
difference calculus can be used as the discrete approximation to that obtained by the differential calculus.   
1) Example 1**: Y = XZ.  
d𝑌 = 𝑍d𝑋 + 𝑋d𝑍. dlog 𝑌 = d log 𝑋 + d log .  
Thus, (𝑌)⁄𝐿(𝑋) ↔ 𝑌⁄𝑋 = 𝑍 and 𝐿(𝑌)⁄𝐿(𝑍) ↔ 𝑌⁄𝑍 = 𝑋.  
2) Example 4**: Y = X + WZ. d𝑌 = d𝑋 + 𝑍d𝑊 + 𝑊d𝑍.  
𝑌d log 𝑌 = 𝑋d log 𝑋 + 𝑊𝑍d log 𝑊 + 𝑊𝑍d log 𝑍, ∴ d log 𝑌 = (𝑋⁄𝑌)d log 𝑋 + (𝑊𝑍⁄𝑌)(d log 𝑊 + d log 𝑍).  
The above-stated correspondences are evident.  
3) Example 5**:Y = exp(X) d𝑌 = exp(𝑋)d𝑋 = 𝑌d𝑋. d log 𝑌 = 𝑋d log 𝑋.  
Again, the foregoing correspondences are evident. 
4) Example 7**: 𝑌 = 𝑋𝐶.  
We show only the MD,  
d log 𝑌 = log 𝑋 d𝐶 + 𝐶d log 𝑋 = (𝐶 log 𝑋) d log 𝐶 + 𝐶d log 𝑋, which holds for any positive X. Hence, the MD 
does not necessarily have the correspondences stated above, which does only if X > 1 (compare the above 
with Eq. (12) and Eq. (13)).  
3.2. Difference Calculus for a Complex Function  
There is a complex function having an additive-multiplicative term such as (x+w)/z or (z – w)2 = (z – w)(z 
– w). To apply our difference calculus to this function, we may need to transform the variables. If such 
transformation of variables must be considered, the difference calculus may have multivalent ADs and 
MDs. On the contrary, the differential calculus always produces a univalent AD and MD. Our multivalent 
ADs and MDs, however, produce the same values as these univalent AD and MD, if all the changes in 
variables approach zero. To simplify the discussion in what follows, we show some examples using only 
ADs without the subscript t.  
1) Example 8: Y = X(Z – W) = XF = G – H.  
Here, F = Z – W, G =XZ, and H = XW. The differential calculus leads to the AD given by d𝑌 = (𝑍 − 𝑊)d𝑋 + 𝑋d𝑍 
− 𝑋d𝑊.  
Recalling our assumptions (i.e., Y, X, Z, and W are positive; so F > 0), the difference calculus provides two 
ADs. 1) With F = Z – W, the AD is obtained from  
∆ log 𝑌 = ∆ log 𝑋 + ∆ log 𝐹 , ∆𝐹 = ∆𝑍 − ∆𝑊.  

𝐿 𝑌 𝐿 𝑌 𝐿 𝑌 𝐿 𝑌 𝐿 𝑌 

(16)  
2) With G = XZ and H = XW, the AD follows from equations:  

∆𝑌  ∆𝐻 ∆ log 𝐺 log 𝑋 ∆ log 𝑍 

∆ log 𝐻 ∆ log 𝑋 ∆ log 𝑊  
These separate contributions to ΔY from X, Z, and W in Eq. (16) and Eq. (17) are different. The question 
now arises: which set of contributions should be selected as the best. We want to leave the matter open. 
(In the example below, a similar problem arises.)  
If, however, the changes in each variable approach zero, each contribution approaches the differential 
results:  
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.  

This property also holds in the example below.  
2) Example 9 (saving ratio): b = (Y – C)/Y = S/Y= 1– a.  
Here, S = Y – C and a = C/Y; and the quantities Y, C, S, a, and b are, respectively, income, consumption,  
saving, propensity to consume, and saving ratio. For dissaving (i.e., S < 0 and b < 0), see the discussion in 
Appendix A. The differential calculus yields:  

.  

The difference calculus yields two ADs.  
1) For b = S/Y,  

,  

2) For b =1– a,  

.  

  
3.3. Difference Quotient versus Differential Quotient  
  
As dY/dX is sometimes called the differential quotient, we call ΔY/ΔX a “difference quotient.” We recall  
the natural fundamental definition of the differential quotient:  

.  

The result derived by the differential quotient, which will be explained below, is the differential equation. 
Thus, that derived by the difference quotient is regarded as the discrete approximation to this equation 
from the definition above. Considering the correspondences shown in Subsubsection 3.1.3, we are able to 
find a situation wherein the difference quotient corresponds to the differential one. Inspired by Subsection 
3.2, we come to the understanding that not all functions can yield the difference quotients that directly 
correspond to their differential versions. Moreover, our method of deriving difference quotients does not 
apply to some functions such as trigonometric functions, because the arguments for the log-mean must be 
positive. We now discuss some examples. In the following, we omit the subscripts t on all functions and 
their difference forms to stress these correspondences. 
1) Y= (X)n, where n is a non-zero constant.  
∆ log 𝑌 = ∆𝑌⁄𝐿(𝑌) = 𝑛∆ log 𝑋 = 𝑛(∆𝑋⁄𝐿(𝑋)).  
Thus, the difference quotient is  

.  

In contrast, we have the following differential quotient, the form of which is typical of a differential 
equation,  

. 
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Provided that ΔX approaches 0, as in the definition above, the difference and differential quotients are 
close. Besides, replacing L(z) with z, we can obtain the right hand of the latter from that of the former. Thus, 
the result produced by the former is also regarded as the discrete approximation to the differential 
equation. (The same property holds in the examples below.)   
2) Y = exp(X).  
Example 5 and Example 5** in Subsection 3.1 produce  

.  

3) is constant.  

.  

Compare our difference quotient with Boole’s [7, p. 10].11  
4) Y = FG, where F= (X)2 + a > 0, G= X + b > 0; and a and b are constants.  
  
∆ log 𝑌 = ∆ log 𝐹 + ∆ log 𝐺,  
∆𝑌 = (𝐿(𝑌)⁄𝐿(𝐹))∆𝐹 + (𝐿(𝑌)⁄𝐿(𝐺))∆𝐺.  
Setting C = (X)2, we have ∆ log 𝐶 = 2∆ log 𝑋. Hence,  

(18)  

∆𝐹 = ∆𝐶 = 2((𝐶)⁄𝐿(𝑋))∆𝑋.  (19)  
Substituting Eq. (19) and ΔG = ΔX into Eq. (18) yields  

,  

In contrast, the differential quotient is  
,   

4. Further Properties of the Logarithmic Mean   
4.1. Comparison of the Logarithmic Mean with the Usual Three Means  
 In this section, we explicitly write the two arguments for the logarithmic, arithmetic, geometric, and  
harmonic means, specifically, L(x1, x0), A(x1, x0), G(x1, x0), and H(x1, x0) for two positive variables, x1 and x0. 
These are also rewritten as x0L(x1/x0, 1), x0A(x1/x0, 1), x0G(x1/x0, 1), and x0H(x1/x0, 1). Hence, we have A(x1, 
x0)/L(x1, x0) =A(x1/x0, 1)/L(x1/x0, 1), G(x1, x0)/L(x1, x0) = G(x1/x0, 1)/L(x1/x0, 1), etc. For a positive constant 
c, all the means have the following properties:  

,  

When the absolute value w is very small  

 ,  

wherein we used log(1 + 𝑤) ≈ 𝑤 − (1⁄2)𝑤2 + (1⁄3) 𝑤3, and  

 
.  
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By contrast, the arithmetic mean is  

.  

Hence, we find  

,  

  

These approximations lead to  

and   

.  
The last approximation is the same as that given in [8, 15].1 Because the ratio of the harmonic mean to the 
log-mean is given by  

,  

we have the following approximation using the two approximations given above:  

.  

Therefore, the three approximations lead to  
(1 + 𝑤, 1) ≤ 𝐺(1 + 𝑤, 1) ≤ 𝐿(1 + 𝑤, 1) ≤ 𝐴(1 + 𝑤, 1) 
If the absolute value of Δx10/x0 is very small, we can utilize these approximations in the foregoing ratios  
such as A(x1, x0)/L(x1, x0) because x1/x0 = 1+Δx10/x0. Thus, the log-mean may be approximated by the usual 
three means. For the actual errors produced by the approximations, see [21, Table 1]. These 
approximations are handy, when we compare the results derived by the difference and conventional calculi 
(see Appendix B). 
The usual three means have helpful properties given by  
𝐴(𝐴(𝑎, 𝑏), 𝐴(𝑐, 𝑑)) = 𝐴(𝐴(𝑎, 𝑐), 𝐴(𝑏, 𝑑)) = 𝐴(𝐴(𝑎, 𝑑), 𝐴(𝑏, 𝑐)) = 𝐴(𝑎, 𝑏, 𝑐, 𝑑),  
𝐺(𝐺(𝑎, 𝑏),𝐺(𝑐, 𝑑)) = 𝐺(𝐺(𝑎, 𝑐), 𝐺(𝑏, 𝑑)) = 𝐺(𝐺(𝑎, 𝑑), 𝐺(𝑏, 𝑐)) = 𝐺(𝑎, 𝑏, 𝑐, 𝑑),  
𝐻(𝐻(𝑎, 𝑏),𝐻(𝑐, 𝑑)) = 𝐻(𝐻(𝑎, 𝑐), 𝐻(𝑏, 𝑑)) = 𝐻(𝐻(𝑎, 𝑑), 𝐻(𝑏, 𝑐)) = 𝐻(𝑎, 𝑏, 𝑐, 𝑑),  
 where a, b, c, and d are positive variables, A(A(a, b), A(c, d)) is the arithmetic mean for any paring, A(a, b, 
c, d) is that for four variables, and so on. Conversely, the log-mean does not always retain this property. We 
present a simple example. Given that a = 1, b = 2, c = 3, and d = 4, we have   
𝐿(𝐿(𝑎, 𝑏), 𝐿(𝑐, 𝑑)) = 2.31225… , 𝐿(𝐿(𝑎, 𝑐), 𝐿(𝑏, 𝑑)) = 2.31221 …,  𝐿(𝐿(𝑎, 𝑑), 𝐿(𝑏, 𝑐)) = 2.31188….  
∴ 𝐿(𝐿(𝑎, 𝑏), 𝐿(𝑐, 𝑑)) ≠ 𝐿(𝐿(𝑎, 𝑐), 𝐿(𝑏, 𝑑)) ≠ 𝐿(𝐿(𝑎, 𝑑), 𝐿(𝑏, 𝑐)) ≠ 𝐿(𝐿(𝑎, 𝑏), 𝐿(𝑐, 𝑑)).  
These pedantic derivations are very difficult, because we must calculate, for example, the following 𝑥 − 𝑦 
or 𝑥⁄𝑦: 𝐿(𝑎, 𝑏) = 1⁄log2, 𝐿 (𝑐, 𝑑) = 1⁄log(4⁄3) , and 𝐿(𝐿(𝑎, 𝑏),𝐿(𝑐, 𝑑)) = 𝑥  𝐿(𝑎, 𝑐) = 2⁄log 3, 𝐿 (𝑏, 𝑑) = 2⁄log 
2 , and 𝐿(𝐿(𝑎, 𝑐), 𝐿(𝑏, 𝑑)) = 𝑦.  

                                                      
1 We also find that the Heron mean for p = 1 defined by (G(1 + w, 1) + 2A(1 + w, 1))/3 is greater than or equal to the log-mean (see [13]).  
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Note that these logarithms are transcendental (i.e., irrational) numbers. From these inequalities and the 
results shown in Section 3 and Subsection 4.3 below, we infer that the log-means for three or more 
variables (e.g., those defined by [16, 18]) have no practical meaning.  
4.2. Log-Approximation Error 
Whenever a positive value of X is close to 1, we may use the log-approximation given by logX ≈ X – 1. We 
shall explain this error ratio, which is given by  

,  

wherein we have used L( X, 1) ≈ A(X, 1). If X = 1, the ratio is null. If X lies between 0.95 and 1.05, this ratio 
lies within about ±2.5 percent.   
4.3. Novel Forms and Induced Formulae 
The log-mean can be stated in novel ways that yield some useful formulae. We begin by presenting two of 
them:  

,  

,  

for which 𝑋1 > 0, 𝑋0 > 0, and 𝑤 > −1. Thus, the three formulae are obtained: 
1⁄(𝑋 𝑋 ) 

.  
The last two tell us the following formulae, one of which is well-  

if  ,  

if .  

The log-mean also allows us to gain new insights into the nature of hyperbolic functions. We present next 
a  
few of them, from which we can obtain other useful formulae. The log-means connected with the hyperbolic 
sine:  

𝑥 −𝑥  −𝑥 

In addition, the hyperbolic cosine is  

,  

where we have used (4). Hence   
(sinh 𝑥)(cosh 𝑥) = 𝑥(𝑒2𝑥, 𝑒−2𝑥).  
These formulae hold for any real x. If we use a new variable z defined by x = logz, simpler formulae are 
gained: (sinh 𝑥)⁄𝑥 = 𝐿(𝑧, 1⁄𝑧) = 𝐿(𝑧2,1 𝑧  cosh 𝑥 = 𝐴(𝑧, 1⁄𝑧) = 𝐴(𝑧2, 1)⁄𝑧,  

∴ (𝑧, 1⁄𝑥) + 𝐴(𝑧, 1⁄𝑧) = (sinh 𝑥)⁄𝑥 + cosh .  
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From these results, we can reformulate many of the well-known formulae for hyperbolic functions in terms 
of the log-means. As an example, consider  
(sinh 𝑥)( cosh 𝑦) = (sinh(𝑥 + 𝑦) + sinh(𝑥 − 𝑦))⁄2,  
from which we have  
𝑥𝐿(𝑒𝑥,𝑒−𝑥)𝐴(𝑒𝑦,𝑒−𝑦) = ((𝑥 + 𝑦)𝐿(𝑒𝑥+𝑦,𝑒−𝑥−𝑦) + (𝑥 − 𝑦)𝐿(𝑒𝑥−𝑦,𝑒−𝑥+𝑦))⁄2.  
  
  
4.4. Logarithmic Mean for 𝒙𝒕 ± 𝒌  
It is well-known that the log-mean for cx1 and cx0, with any positive constant c, is given by cL(x1, x0). What 
is  
it for x1± c and x0 ± c? When we know only the range of xt that is generally given by [xt – d, xt + d] for a small 
positive d, we may want to examine the range of the log-mean L(x1, x0). If k≠ 0 is any constant (positive or 
negative) and its absolute value is denoted |𝑘| ≪ Min{𝑥0,𝑥1}, we establish a nice relation between L(x1, x0) 
and L(x1±k, x0 ±k). Here, xt± k is always positive and a very small |k| is desirable.  
The latter log-mean is  

  

wherein we used the log-approximation, log(1 + 𝑘⁄𝑥𝑡) ≈ 𝑘⁄𝑥𝑡. In contrast, we have another log-mean that 
is given by  

.  

Thus, we derive  

.  (20)  

If 𝑑 → |𝑘|, the range of the log-mean L(x1, x0) is  
  
(𝑥1 − |𝑘|,𝑥0 − |𝑘|) < 𝐿(𝑥1, 𝑥0) < 𝐿(𝑥1 + |𝑘|,𝑥0 + |𝑘|);  
Accordingly, this lower and upper bounds can be computed using L(x1, x0). If we can moreover assume (𝑥1, 
𝑥0) ≈ 
(𝑥1,𝑥0), we obtain from Eq. (20)  

.   

5. Conclusion   
We have shown useful properties of the logarithmic mean (log-mean) and applied it to decompositions for 
some functions. We have also established that this mean can be approximated by the three usual means 
(arithmetic, geometric, and harmonic means) and given by the hyperbolic functions.   
Our discussions are mainly focused on two areas. One is decomposing the difference or ratio of a function 
between two periods into an additive form of which all components are additive differences and a 
multiplicative form of which all components are logarithmic differences. We call the former an additive 
decomposition (AD) and the latter a multiplicative decomposition (MD). To derive an AD and/or an MD for 
some functions, our method called the difference calculus needs to employ a log-mean. Using this method, 
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we have derived the ADs and MDs for many functions, and compared some results with those derived by 
the conventional (finite-difference) and differential calculi.  
The other area involves illustrating the close correspondences between the difference quotient that is 
commonly given by a ratio of some log-means and the differential quotient that is generally called a 
derivative. We have explained these correspondences using various functions and presented a certain 
function without the correspondence.  
In these discussions, we have demonstrated the following three points: 1) our difference calculus has many 
advantages over the conventional calculus to derive ADs and MDs for some functions; 2) some of the results 
obtained by our calculus can/cannot be used as discrete approximations to those by the differential 
calculus; and 3) some expressions produced by the difference quotients can/cannot be used as discrete 
approximations to corresponding differential equations. In particular, the latter two points are important 
wherever we must derive a proper discrete approximation to a differential calculus or a differential 
equation in the information age (see also online [11: “Finite-difference calculus, Computational 
mathematics, and Numerical analysis”]).  
Appendix A: Difference Calculus for Non-Positive Variables   
As logarithms are only defined for positive variables, our difference calculus cannot derive an MD for a  
function depending on a non-positive variable. Nevertheless, an AD may be derivable for it. Using a simple 
function such as Example 1 in Subsubsection 3.1.2, we shall derive two ADs: one including a non-zero 
variable and another including a non-positive variable (see also Examples 6 and 7 in that 
subsubsection).We explain the methods to handle these problems as conjectures, because we need one 
more assumption for the former AD and we are unable to derive a definite result for the latter AD. In this 
appendix, we assume that only one of Zt (t = 0, 1) may be non-positive, so 𝑍1 + 𝑍0 and one of Yt (t = 0, 1) 
may be zero. (Recall the two differences of Xt and Zt are non-zero under the initial assumptions.)   
Method 1: 𝑌𝑡 = 𝑋𝑡𝑍𝑡and 𝑍𝑡 ≠ 0.  
Squaring both sides of this function leads to  
  Φ𝑡 = Ψ Ω ,  wherein Φ𝑡 = (𝑌𝑡)2,Ψ𝑡 = (𝑋𝑡)2, and Ω𝑡 = (𝑍𝑡)2. Here, we must assume Φ1 ≠ Φ0 (i.e. , 𝑌1 ≠ −𝑌0),  
because we  
use its two differences. (Remember that 𝑌1 ≠ 𝑌0under the initial assumption.) Thus we have  
Δ log Φ10 = Δ log Ψ10 + Δ log Ω10 ,  

 (A1)  

The six terms in the above are given by  
ΔΦ10 = (𝑌1  𝑌0)(𝑌1 − 𝑌0) = 2𝐴(𝑌)Δ 10,ΔΨ10 = 2𝐴(𝑋)Δ𝑋10,ΔΩ10 = 2𝐴(𝑍)Δ𝑍10,  
  (Φ) = ΔΦ10⁄Δ log Φ10 , 𝐿(Ψ) = ΔΨ10 Δ log Ψ10 , 𝐿(Ω) = ΔΩ10⁄Δ log Ω10.  
Since 𝑍1 + 𝑍0 = 0 may hold, Ω10and Δlog Ω10 may be null. If so, (Ω) = Ω1 = Ω0. Whereas Eq. (A1) is strictly 
not derived, we may externally regard Eq. (A1) as an identity because ΔΩ10 = 0 in there. Thus our AD is  

,  (A2)  

  
wherein A(Z) may be null and A(Y) ≠ 0 is crucial.  
If 𝑍𝑡 > 0 (i. e. , 𝐴(𝑍) ≠ 0 and 𝑌t > 0), we obtain the following from Eq. (4):  
        𝐿(Φ) = 𝐴(𝑌)𝐿(𝑌), 𝐿(Ψ) = 𝐴(𝑋)𝐿(𝑋), and 𝐿(Ω) = 𝐴(𝑍)𝐿(𝑍). Therefore, the A D of Eq. (A2) degenerates to 
Eq. (9) under this assumption.  
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Method 2: 𝑌𝑡 = 𝑋𝑡𝑍𝑡and 𝑍(𝑡 = 0 or 1) is any variable including a non-positive one.  
One of Zt (t = 0, 1) may be null. First, we set a positive constant c that must satisfy the following:  
𝑐 ≪ Min{|𝑍0|,|𝑍1|} for 𝑍𝑡 ≠ 0 (𝑡 = 0, 1),  
  or 𝑐 ≪ |𝑍𝑠| for 𝑍𝑠 ≠ 0 and 𝑍𝑡≠𝑠 = 0 (𝑠 = 0, 1).  
A very small c is desirable, so that the conditions, to be mentioned below, are satisfied (see also Table 2 
below). For example, if {𝑍0 = −0.5,1 = 0.2},then 𝑐 = 10−10; and if {𝑍0 = 2,𝑍1 = 0},then 𝑐 = 10−8. Using this c, we 
define two new variables:  
𝑈𝑡 = (𝑍𝑡 + 𝑐)⁄2 ≠ 0, 𝑉𝑡 = (𝑍𝑡 − 𝑐)⁄2 ≠ 0 and 𝑍𝑡 = 𝑈𝑡 + 𝑉𝑡.  
Thus  
 𝑌𝑡 = 𝑋𝑡𝑍𝑡 = 𝑋𝑡𝑈𝑡 + 𝑋𝑡𝑉𝑡 = 𝑀𝑡 + 𝑁𝑡, ∆𝑌10 = ∆𝑀10 + ∆𝑁10,  
in which 𝑀𝑡 = 𝑋𝑡𝑈𝑡 = (𝑌𝑡 + 𝑐𝑋𝑡)⁄2 ≠ 0 and 𝑁𝑡 = 𝑋𝑡𝑉𝑡 = (𝑌𝑡 − 𝑐𝑋𝑡)⁄2 ≠ 0. From these, we have 𝑀1 + 𝑀0 = (𝑌1 + 
𝑌0 + (𝑋1 + 𝑋0))⁄2 and 𝑀1 − 𝑀0 = (𝑌1 − 𝑌0 + 𝑐(𝑋1 − 𝑋0))⁄2.  
We can obtain two values, c1 and c2, from the two equations above,  
𝑐1 = −(𝑌1 + 𝑌0)⁄(𝑋1 + 𝑋0), 𝑐2 = −(𝑌1 − 𝑌0)⁄(𝑋1 − 𝑋0).  
Our c is sufficiently small as to satisfy the following conditions:  
𝑐 ≪ |𝑐1| and 𝑐 ≪ |𝑐2|.  
Hence, we have |𝑀1| ≠ |𝑀0| (i.e., 𝑀1 ≠ ±𝑀0). Similarly, we have |𝑁1| ≠ |𝑁0|.  
Next, we apply the foregoing procedures used in Method 1 to these functions Mt and Nt. From Mt, we obtain 
the following: Γ𝑡 = Ψ Θ𝑡, wherein ,  

Two log-means are defined in like manner to the above, and the other two terms are given by  
ΔΓ10 = 2(𝑀)Δ𝑀10 and ΔΘ10 = 2𝐴(𝑈)Δ𝑈10.  
Hence, we derive  

,  

wherein 
Similarly, we derive  

wherein .  
Therefore, our AD is  

.  (A3)  

Because the contributions of X and Z in Eq. (A3) depend on c, these are indefinite.2  
If Zt > 0, then Ut > 0 and Vt > 0. So we can employ the relations (A4) below.  

(Ψ) = 𝐴(𝑋)𝐿(𝑋), 𝐿(Γ) = 𝐴(𝑀)𝐿(𝑀), 𝐿(Λ) = 𝐴(𝑁)𝐿(𝑁),  
(A4)  (Θ) = 𝐴(𝑈)𝐿(𝑈), and 𝐿(Υ) = 𝐴(𝑉)𝐿(𝑉).  
  
In regard to L(U) and L(V), see also Eq. (20). Substituting the relations (A4) into Eq. (A3) yields  

                                                      
2 Ang and Liu [2] have shown the method of treatment for Zt ≥ 0. It was not based on a theoretical foundation. Their small-value  
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(𝑀) + 𝐿(𝑁) 1 𝐿(𝑀) 𝐿(𝑁) 
{ } { } .  (A5)  

Since c is very small, 𝑈𝑡 ≈ 𝑉𝑡 ≈ 𝑍𝑡⁄2 and 𝑀𝑡 ≈ 𝑁𝑡 ≈ 𝑌𝑡⁄2; accordingly, we have (𝑈) 𝐿(𝑉) 𝐿(𝑍)⁄2 
and 𝐿(𝑀) ≈ 𝐿(𝑁) ≈ 𝐿(𝑌)⁄2.  
Substituting these relations into Eq. (A5), we obtain the approximation,  
∆𝑌10 ≈ ((𝑌)⁄𝐿(𝑋))∆𝑋10 + (𝐿(𝑌)⁄𝐿(𝑍))∆𝑍10.  (A6)  
Under Zt > 0, we find Eq. (A3) cannot yield Eq. (9) whereas Eq. (A2) can.   
The AD of the differential calculus is also easily derived, if the variations of the two independent variables  
are very small. This AD is  
d𝑌 = 𝑍d𝑋 + 𝑋d𝑍.  
We must employ in practice the discrete approximation, which is ordinarily given by  
∆𝑌10 ≈ 𝑍0∆𝑋10 + 𝑋0∆𝑍10.  (A7)  
However this is not correct because the approximation must be symmetric; specifically, the reverse 
approximation of the AD is  
∆𝑌01 ≈ 𝑍1∆𝑋01 + 𝑋1∆𝑍01,  
which is not equal to the approximation (A7). The proper discrete approximation may be Eq. (7) in this 
instance. 
 
 
 
  
Table 1: Numerical example 1  

            
 t Xt Zt Yt ΔYt0 Decompo sition (A2) Decompo sition (A3) Decomp osition (7) 

        c = 0 .0001  

      αt0ΔXt0 βt0ΔZt0 γt0ΔXt0 δt0ΔZt0 A(Zt0)ΔXt0 A(Xt0)ΔZt0 

 0 2.0
0 

0.10
0 

0.200
00 

       

Cas
e 1 

1 2.0
1 

-
0.01
0 

-
0.020
10 

-
0.220
10 

0.0004777
851 

-
0.2205777
851 

0.0004777
858 

-
0.2205777
858 

0.0004500
000 

-
0.2205500
000 

Cas
e 2 

2 2.0
1 

0 0 -
0.200
00 

  0.0001445
085 

-
0.2001445
085 

0.0005000
000 

-
0.2005000
000 

Cas
e 3 

3 2.0
1 

0.10
1 

0.203
01 

0.003
01 

0.0010049
959 

0.0020050
041 

0.0010049
959 

0.0020050
041 

0.0010050
000 

0.0020050
000 

            
Note : For the coefficiets of the variables, 
see the text. 

     

Table 2: Numerical example 2  
            

https://ethanpub.online/Journals/index.php/E32


Statistics and Mathematical Research Journal 
ISSN: 2997-6898 | 
Volume 11 Issue 3, July-September, 2023 
Journal Homepage: https://ethanpub.online/Journals/index.php/E32  
Official Journal of Ethan Publication 
 

Statistics and Mathematical Research Journal 

P a g e 16 | 20 

 t X
t 

Zt Yt ΔYt
0 

Decompo sition (A2) Decompo sition (A3) Decompo sition (A3) 

        c = 0.01 c = 0 .0001 

      αt0ΔXt0 βt0ΔZt0 γt0ΔXt0 δt0ΔZt0 γt0ΔXt0 δt0ΔZt0 

 0 5 2 10        

Cas
e 4 

1 7 -
1.
5 

-
10.
5 

-
20.
5 

-
141.374413
64 

120.874413
64 

-
149.946885
71 

129.446885
71 

-
141.375221
51 

120.875221
51 

Cas
e 5 

2 7 0 0 -
10.
0 

  0.67812295 -
10.6781229
5 

0.35170032 -
10.3517003
2 

Cas
e 6 

3 7 3 21 11.
0 

4.98855413 6.01144587 4.98855298 6.01144702 4.98855413 6.01144587 

            
Note : For the coefficiets of the 
variables, see the text. 

     

To make up the discussions above, we shall explain the computed results for these decompositions using                                                                                                                                                                                          
strategy replaces a zero-value with a small positive k and this is very different from our Method 2. Their 
analytical limit strategy is irrelevant to a log-mean. See also [3].  
simple numerical examples. Table 1 shows the results obtained using Eq. (A2), Eq. (A3), and Eq. (7) under 
the assumption wherein only the variation of X is very small. Conversely, the variation of Z becomes 
necessarily large when Zs> 0 and Zt≠ s ≤ 0. (Note that Eq. (7) always holds for any real variable.) The two 
independent variables are given in the table; subscript t (1, 2, or 3) exhibits the comparison period and 0 
the base period. The base period is always fixed. For example,

 

. 

Whereas the decomposition of Eq. (A2) cannot apply to Case 2 because of Z2= 0, Eq. (A3) and Eq. (7) can 
apply to all cases. (In Table 1, we used c =0.0001 for Eq. (A3).) Comparing the computed results using Eq. 
(A2) with those from Eq. (A3), we find close relationships for Cases 1 and 3. Comparing the results from 
Eq. (A3) with those from Eq. (7), we see that the two contributions in Cases 1 and 3 are close. In Case 2, 
however, the X contribution of Eq.  
(A3) is far removed from that of Eq. (7). The reason why this difference is produced is beyond the scope of 
this paper. (We presently infer that Eq. (7) in Case 2 cannot be used as the discrete approximation to the 
AD produced by the differential calculus. See also Appendix B.)   
Table 2 shows the computed results using Eq. (A2) and Eq. (A3) without the assumption above. For Eq. 
(A3), we computed two cases : c = 0.01 and c = 0.0001. Two independent variables are also exhibited in the 
table. Note that the results from Eq. (A2) in Case 6 are equal to those from Eq. (9). The table shows that the 
two contributions of Eq. (A3) depend on c. Comparing the results using the smaller c value with those using 
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another value in Cases 4 and 6, we see that the deviations of the former from the results derived using Eq. 
(A2) are less than those of the latter. Additionally, two X contributions in Case 5 are very different. Recall 
that a similar behavior is found in Case 2 above.  
Appendix B: Comparison of the Difference and Conventional Calculi  
We focus on the superior properties of the difference calculus over the conventional calculus using the 
same examples. Here, only ADs are shown and all variables are positive. 1) Example a: 𝑌𝑡 = 𝑋𝑡𝑍𝑡.  
The conventional calculus leads to Eq. (7) and the difference calculus to Eq. (9). To compare the former 
with the latter, we need to employ two approximations explained in Subsection 4.1. These are  

  

Given that the second-order terms of these approximations are negligible, we have  
𝐴(𝑍) ≈ 𝐺(𝑍) = 𝐺(𝑌)⁄𝐺(𝑋) ≈ 𝐿(𝑌)⁄𝐿(𝑋) and 𝐴(𝑋) ≈ 𝐺(𝑋) ≈ 𝐿(𝑌)⁄𝐿(𝑍).  
Thus, if both X1/X0 and Z1/Z0 (and thereforeY1/Y0) are close to 1, the two components in Eq. (7) approach 
those in Eq. (9). Below, we shall assume similar approximations as given above.   
2) Example b: 𝑌𝑡 = 𝑊𝑡𝑋𝑡𝑍𝑡.   
For the conventional calculus, we may use transformations of the variables such as 𝐷𝑡 = 𝑋𝑡𝑍𝑡,𝑡 = 𝑊𝑡𝑍𝑡,and 
𝐹𝑡 = 𝑊𝑡𝑋𝑡. Whenever these are applied to this function, the AD of Eq. (7) derived by the conventional 
calculus can be utilized. If we utilize Dt, we obtain the AD by repeatedly utilizing Eq. (7):  
 ∆𝑌10 = 𝑊1𝐷1 − 𝑊0𝐷0 = 𝐴(𝐷)∆𝑊10 + 𝐴(𝑊)∆𝐷10  = 𝐴(𝑋𝑍)∆𝑊10 + 𝐴(𝑊)(𝐴(𝑍)∆𝑋10 + 𝐴(𝑋)∆𝑍10).  
Analogously, we have two other ADs using Et and Ft. We regard the arithmetic mean of these three as the 
AD for this function derived by the conventional calculus because we employed the arithmetic mean to 
derive Eq. (7) and Eq. (8). Furthermore, we consider that its three contributions approach those obtained 
by the difference calculus as shown later. Thus, the AD is  
∆𝑌10 = 𝑎∆𝑊10 + 𝑏∆𝑋10 + 𝑐∆𝑍10,  (B1)  
wherein  
𝑎 = (𝐴(𝑋𝑍) + 2𝐴(𝑋)𝐴(𝑍))⁄3, 𝑏 = (𝐴(𝑊𝑍) + 2𝐴(𝑊)𝐴(𝑍))⁄3,  
                           𝑐 = ((𝑊𝑋) + 2𝐴(𝑊)𝐴(𝑋))⁄3.  
In sharp contrast, our difference calculus can easily yield this AD, the procedures being  
∆ log 𝑌10 = ∆ log 𝑊10 + ∆ log 𝑋10 + ∆ log 𝑍10,  
𝐿(𝑌) 𝐿(𝑌) 𝐿(𝑌) 
∴ ∆𝑌10 = 𝐿 (𝑊) ∆𝑊10 + (𝑋) ∆𝑋10 + 𝐿(𝑍) ∆𝑍10.  (B2)  
  
In applying the approximations stated above to the two ADs of Eq. (B1) and Eq. (B2), we find  
  𝑎 ≈ (𝐺(𝑋𝑍) + 2𝐺(𝑋)𝐺(𝑍))⁄3 = 𝐺(𝑋𝑍) = 𝐺(𝑊𝑋𝑍)⁄𝐺(𝑊) ≈ 𝐿(𝑌)⁄𝐿(𝑊) , 𝑏 ≈ G(𝑊𝑍) ≈ 
                                      𝐿(𝑌)⁄𝐿(𝑋), 𝑐 ≈ 𝐺(𝑊𝑋) ≈ 𝐿(𝑌)⁄𝐿(𝑍).   
In passing, we note that the differential calculus establishes the following AD:        d𝑌 = 𝑋𝑍d𝑊 + 𝑊𝑍d𝑋 + 
𝑊𝑋d𝑍 = (𝑌⁄𝑊)d𝑊 + (𝑌⁄𝑋)d𝑋 + (𝑌⁄𝑍)d𝑍,  which is closely related to Eq. (B2). See also the correspondences 
between a finite-change variable and an infinitesimal-change variable in Subsubsection 3.1.3.  
The AD derived by the conventional calculus has a shortcoming whenever 𝑊𝑡 = 𝑋𝑡, 𝑋𝑡 = 𝑍𝑡, 𝑍𝑡 = 
𝑊𝑡, or 𝑊𝑡 = 𝑋𝑡 = 𝑍𝑡. We only show an example wherein we assume 𝑋𝑡 = 𝑍𝑡. From Eq. (B1), we obtain  
∆𝑌10 = (1⁄3){(𝐴(𝑋2) + 2(𝐴(𝑋))2)∆𝑊10 
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(B3) + 2((𝑊𝑋) + 2𝐴(𝑊)𝐴(𝑋))∆𝑍10}.  
Since 𝑌𝑡 = 𝑊𝑡𝐷𝑡 and 𝐷𝑡 = (𝑋𝑡)2,  we have another AD from the first-mentioned AD,  
∆𝑌10 = 𝐴(2𝑋)2∆)𝑊∆𝑊1010++2𝐴2(𝐴𝑊(𝑊)𝐴)(𝐴𝑋()𝑋∆)𝑍∆10𝑋10. (B4) = 𝐴(𝑋 
Ordinarily, Eq. (B3) does not equal Eq. (B4).   
Contrarily, our differential calculus derives the AD from Eq. (B2), giving  

,  (B5)  

which is the same as the AD derived using 𝑌𝑡 = 𝑊𝑡(𝑋𝑡)2. The differential calculus analogously leads to the 
same AD that is given by: d𝑌 = 𝑋2d𝑊 + 2𝑊𝑋d𝑋 = (𝑌⁄𝑊)d𝑊 + (2𝑌⁄𝑋)d𝑍. (B6)   
It is important that both Eq. (B4) and Eq. (B5) always correspond to Eq. (B6) but Eq. (B3) does not. 
Therefore, the conventional method cannot always produce the ADs that correspond to those derived by 
the differential one for multiplicative functions composed of three or more independent variables. The 
same can be found for the next example, if 𝑋𝑡 = 𝑍𝑡.  
3) Example c: 𝑌𝑡 = 𝑊𝑡/(𝑋𝑡𝑍𝑡),wherein 𝑊𝑡 ≠ 𝑋𝑡 and 𝑊𝑡 ≠ 𝑍𝑡. 
The conventional calculus also exploits the variable transformations, 𝐼𝑡 = 𝑋𝑡𝑍𝑡,𝑡 = 𝑊𝑡/𝑍𝑡, and 𝐾𝑡 = 𝑊𝑡/𝑋𝑡.  
These lead to  
𝑌𝑡 = 𝑊𝑡⁄𝐼𝑡 = 𝐽𝑡⁄𝑋𝑡 = 𝐾𝑡⁄𝑍𝑡.  
Hence, ADs of Eq. (7) and Eq. (8) can be utilized. We obtain, for example, the following using Kt:  

,  

These two lead to the AD for this function. In this manner, we have three ADs using the three  
transformations above. The arithmetic mean of these is also regarded as the AD for this function derived 
by the conventional calculus; specifically,  

where in d, e, and f  

Our difference calculus quickly yields this AD, which is  

.  

If we can apply the above-stated approximations to the two ADs, we find the correspondences between the 
two methods.   
The differential calculus leads to the AD:  

.  

We can also find a close relation between the ADs derived by the differential and the difference calculi 
Now, we say that the conventional calculus is senseless for the functions in Example b and Example c. How 
about 𝑌𝑡 = 𝑉𝑡𝑊𝑡/(𝑋𝑡𝑍𝑡)? Although our difference calculus can quickly derive this AD, the conventional 
calculus needs more awkward and complicated procedures than the above. Additionally, the foregoing 
discussions and those explained in Subsubsection 3.1.3 make clear that the results derived by our 
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difference calculus are superior to those by the conventional calculus as discrete approximations to those 
by the differential calculus. 
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