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 Abstract:  
Lie symmetry theory is a well-established and powerful tool for solving deterministic differential 
equations, with numerous applications ranging from finding group-invariant solutions to reducing the 
order of higher-order differential equations and discovering conservation laws. However, its extension 
to stochastic differential equations (SDEs) is still in its infancy. In contrast to deterministic 
counterparts, Lie group theory for SDEs remains a relatively unexplored area. 
Gaeta and Quintero introduced the first steps towards extending Lie symmetries to stochastic ordinary 
differential equations (SODEs). They considered a limited class of transformations, known as fiber-
preserving transformations. These transformations involve mapping the SODEs from one fiber to 
another in the manifold, represented as: dX = A(X)dt + B(X)dW, where X is the state variable, A(X) 
represents the drift term, B(X) is the diffusion term, and dW is the Wiener process. However, it's 
important to note that this approach is constrained to a specific subset of transformations, capable of 
preserving the fiber structure. The scope of these transformations is limited compared to the broader 
universe of possible transformations. 
In this manuscript, we aim to further explore the extension of Lie symmetries to SDEs, moving beyond 
the restrictions of fiber-preserving transformations. We strive to enhance our understanding of the 
relationship between symmetries in stochastic systems and their corresponding Fokker-Planck 
equations. This work contributes to the ongoing development of Lie symmetry theory in the realm of 
stochastic differential equations, offering new avenues for addressing complex stochastic systems. 
  
Keywords: Lie symmetry theory, stochastic differential equations, fiber-preserving transformations, 
Fokker-Planck equation, and symmetries 

 
1. Introduction   
Lie symmetry theory of deterministic differential equations is well understood in literature [16, 17, 18, 19, 
20] and can used for many important applications in the context of differential equations. For instance, for 
determination of group-invariant solutions, solving the first order differential equation, reducing the order 
of higher ODE, reducing the number of variables of partial differential equations and finding conservation 
laws.   
In contrast to the deterministic differential equation, only a few attempts have been made to extend Lie 
group theory to the stochastic differential equation. It is worth noticing that the theory is still developing. 
Gaeta and Quintero [6] made the first approach to extend Lie symmetry of differential equations to It 
stochastic ordinary differential equations by which they consider a small class of transformations, i.e., fiber 
preserving transformations   

 
 = ( , ,  ),               = ( ,  ).  
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The method has been used to study the relationship between symmetries of stochastic systems to the 
symmetries of their corresponding Fokker-Planck equation. This is a restricted transformation that can 
only work to a fiber-preserving class of transformations which is a small sub-class of all possible 
transformations.  
The second attempted [3, 4, 5, 8, 10, 15] succeed in applying symmetry transformations that include all the 
dependent variables in the transformation  

 
 = ( , ,  ),               = ( , ,  ). 

This approach has been used to study the symmetry of scalar stochastic ordinary differential equations of 
first order [4] which reconciled the works of Meleshko S. V., Srihirun B. S. and Schultz E. [8] and Wafo Soh 
and F.M. Mahomed [10]. Furthermore, the formal method for finding Lie Point symmetries of scalar  It 
stochastic differential equations of the first order driven by the Wiener process was also discussed by E. 
Fredericks [3] with intention to correct and reconcile the finding of Srihirun and Schultz [8].  
To the best of our knowledge in literature, all the methods above were applied only to the It stochastic 
differential equations driven by Wiener processes [3-12]. In this paper we extend the Lie symmetry 
methods to the class of It stochastic differential equations driven by a Poisson process by implementing a 
more generalized It formula and following the methodology of G. Gaeta [6] and E Fredericks and F. M. 
Mahomed [3]. 
We consider an It stochastic differential equation driven by Poisson processes; 
         ( ) = , ( )  + , ( )  ( )                                                                              (1.1)  
with initial condition (0) = . So, equation (1.1) can be written in integral form as  
( ) = + , ( )   + , ( )  ( ).                                                                (1.2) 
Where , ( ) and , ( ) are  × 1 dimensional drift vector coefficients and Poisson diffusion coefficient 
respectively, which are assumed to satisfy Ikeda and Watanabe conditions for the uniqueness and existence 
of the solution of (1.1)while ( ) is the infinitesimal increment of the Poisson Process [12, 13, 14]. 
Symmetries of (1.1)are analysed by considering an infinitesimal generator  
= ( , )  + ( , ) .                                                                                                                (1.3)  
The determining equations for It stochastic differential equations (SDE) driven by Poisson processes  (1.1) 
are derived using It calculus and are found to be non-stochastic.  
Starting with an arbitrary function , ( ) which is once differential with respect to the spatial coordinate  and 
differentiable once with respect to temporal variable , the It Poisson diffusion process for , ( ) of  
(1.1) exists [1, 2] and is  
  
, ( ) = + + ( , ( ) + , ( ) − , ( )   ( ).           (1.4)  
  
The Einstein summation convention is assumed throughout this paper. Let  
  
Γ( ) , ( ) =  +  (1.5)  
and  

  

  
Therefore (1.4) can be written as;  
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, ( ) = Γ( ) , ( ) + Γ(∗ ) , ( ) ( ).                                                              (1.7)  
Using the It multiplication properties of Poisson processes [1, 2]  
  
( ) ∙ ( ) = ( ), ( ) ∙ = 0 and ∙ = 0                                                         
  
And application of infinitesimal transformations the determining equations for (SDE) with Poisson 
processes  
are derived and are non-stochastic. The main result can be summarised as  
  
Theorem 1.1: The It stochastic differential equation driven by Poisson processes  
  
( ) = , ( )  + , ( )  ( )                                                                                      (1.8)  
Where , ( ) and , ( ) are the × 1 dimensional drift vector coefficient and the Poisson diffusion coefficient, 
with infinitesimal generator  
  
= ( , )  + ( , )                                                                                                                 (1.9)   
Has the following determining equations;   
Γ( ) + Γ( ) + −Γ( ) , ( ) = 0,                                                              (1.10) 2 

Γ ( ) + −Γ(∗ ) , ( ) = 0                                                                                  (1.11)  
2 
with additional conditions,  
  
Γ(∗ ) , ( ) = 0,     Γ( ) , ( ) = .                                                                            (1.12)  
Where the operators Γ , ( ) and Γ∗ , ( ) are defined as in (1.5) and (1.6), and > 0 is called the intensity of the 
jump process or jump rate.  
1. Lie Group Transformation   
Consider a one parameter group of transformations of the time index  and the spatial variable  respectively 

 
= ( , ,  ),               = ( , ,  )  
with the infinitesimals  
  

 = ( , ),         = ( , )  
  
Satisfying the following initial conditions at  = 0   

 
= ,        |    = .     
A one parameter Lie group of infinitesimal transformations is therefore 

 
= +  ( , ) + ( )                                                                                        (2.1)  
And 

 
( ) = ( ) +  ( , ) + ( )                                                                                        (2.2)  
  

https://ethanpub.online/Journals/index.php/E32


Statistics and Mathematical Research Journal 
ISSN: 2997-6898 |  
Volume 10 Issue 4, October-December, 2022  
Journal Homepage: https://ethanpub.online/Journals/index.php/E32  
Official Journal of Ethan Publication 
 

Statistics and Mathematical Research Journal 

P a g e 15 | 26 

Where  is the parameter of the group, with the corresponding generator of the Lie algebra of the form   
  
= ( , )  + ( , ) .  
The differential point transformations of the spatial, temporal and the Poisson process variables are as 
follows  

   

  
  
and  

 
= ( ) +    + ( ) + ( ).                                                     (2.5) 2 
  
Using the It formula(1.7), we have the spatial and temporal infinitesimals in It forms as  
  

  

  
  

  
where Γ( ) , Γ(∗ ) , Γ( )  Γ(∗ )are the drift and diffusion coefficients of the spatial and temporal infinitesimals, 
respectively defined using the operators (1.5) and (1.6).    
By substitution of the infinitesimal of spatial (2.6) and temporal variables (2.7) in (2.3), (2.4) and (2.5), and 
also using the It multiplication properties we proceed to get the group transformations of temporal, spatial 
and jump variables in It forms  

  

  
 = +  Γ( )  + Γ(∗ )  ( ) + ( )                                                               (2.9)  

and  
 Γ( )  + Γ(∗   )  ( ) 

= ( ) +    + ( ) + ( ).                           (2.10)  
2 
Expending the It infinitesimal of the jump variable (2.10) by utilising the Poisson process differential 
multiplication properties we get  

 

  

1.1 Invariance form of the Spatial Process   
To ensures the recovery of the finite transformations from the infinitesimal transformation, we need to 
transform ( ) into 

 
( ) = , ( )  ( )                                                                          (2.12)  
  

+ , ( )   
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= ,    + , ,  
respectively are  
  

 
, ( ) =  +   , ( )  
  
                                                 =  , ( )   +  + , ( )                        (2.13)  
and  

 
, ( ) =  +   , ( )  
  
  
                                                 =  , ( )   +  + , ( )                      (2.14)  
1.2 Poisson Invariance Properties  
We apply the invariance to the moments of the Poisson process to ensure it remains invariant under the 
group transformations, viz the instantaneous mean and variance of the Poisson process which are: 
[ ( )] = ∙                                                                                                            (2.15)  
  
[ ( ) ∙ ( )] = ∙ .                                                                                             (2.16)  
  
The invariance of the instantaneous mean of the transformed Poisson process under new measure is 

  
( ) = ∙                                                                                          (2.17)  
  
Expanding (2.17) using the It forms of jump (2.8) and temporal group transformations (2.11) we get  

  

  
Next, we apply the invariance form to instantaneous variance of the transformed Poisson process measure 
(2.16) from which using (2.11) we have 

  
( ) ∙ ( ) = ∙                                                                      (2.19)  
  
Thus, using (2.18) and the It temporal group transformation (2.8) we have derived the following 
generalized random time change formula 
= Γ( )( ) (2.20)  
With    
Γ( ) , ( ) = =                                                                                          (2.21)  
Using the probabilistic invariance property of the transformed time index differential, i.e.,  

 
= .                                                                                         (2.22)  

where the transformed drift component   
generator   
  

, ( ) and  jump component  , ( ) using the 
infinitesimal  

( ) ( )   
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Finally, we can conclude from (2.18) the temporal infinitesimal ( , )does not depend on  , therefore  
( , ) = ( ).  
  
Definition 2.1The infinitesimal transformations (2.3) and (2.4) i.e. 

 
 

= +  ( , ) + ( ),        = +  ( , ) + ( )(2.23) 
Are called Lie symmetry transformations of (1.1) if they leave the It stochastic differential equation (1.1)  
  
( ) = , ( )  + , ( )  ( )(2.24)  
And the infinitesimal moments for the differential Poisson process i.e.,  
  
[ ( )] = ∙ ,    [ ( ) ∙ ( )] = ∙      [ ] = (2.25)  
  
Invariant. Where  > 0 and  is the jump intensity and group parameter respectively.  
2. Determining Equations   
In this section, we will derive the determining equations for the admitted symmetries of (1.1). The intention 
is  
to 
transform  

 
( ) = , ( )  + ,   ( )                                                                  (3.1)  
  
Substituting the transformed drift coefficient (2.13), Poisson vector coefficients(2.14), It forms of temporal 
(2.8) and Poisson group transformation (2.11) into (3.1) we get  

 
   

  
 ( )                         (3.2)  

  
Therefore, by comparing transformed stochastic differential equation (3.2) and the It form of the spatial  
group transformation (2.9) we have the following determining equations  
  
Γ( ) + Γ( ) + −Γ( ) , ( ) = 0,                                                                 (3.3)  
2 
and  

 −Γ(∗ ) , ( ) = 0.                                                                                   (3.4)  

  
The invariance of the instantaneous mean of the transformed differential Poisson process (2.17) gives 
additional conditions i.e., from (2.18) and (2.21)we get  
  

( )   into   
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Equation (3.3) can be interpreted using the definition of first prolongation of an infinitesimal generator for 
non-stochastic ordinary differential equations as follows  
  
[ ] = + [ ] .                                                                                                                      (3.6)  
̇ 
Where  
̇ =  =                                                                                                                             (3.7) and  
  
[ ] 
= ( ) − ̇ ( )                                                                                                                (3.8)  
  
                               = + ̇ − ̇ + ̇                                                               (3.9)  
  
with total time derivative   defined as  
= +  ̇ + ̈ + ⋯                                                                                                  (3.10)  
 
Using the definition of first prolongation on  ̇ − at ̇ = , can be expressed as 
[ ]( ̇ − ) ̇ = [ ] − ( ).                                                                                 (3.11)  
Using (3.8) and (3.11) equation (3.4) can be written 
as   

   
Where the operators Γ( ) , ( ) , Γ(∗ ) , ( ) are defined in (1.5), (1.6) respectively, and  is called the jump rate or 
jump intensity of the Poisson process.  
Remark 3.1: The extra condition obtained from the invariance of the instantaneous mean of the 
transformed differential Poisson process (2.17) forces the temporal infinitesimal ( , ) to be a function of the 
time variable only. This implies that we are now dealing with a fiber-preserving infinitesimal generator i.e.,  
  
= ( )  + ( , ) .                                                                       (3.13) 
3. Applications  
In this section, we are going to apply the derived determining equations of Poisson It stochastic differential 
equations obtained in the previous section to some Poisson process models to show how the determining 
equations can be used to find the admitted Lie point symmetries of each model.  
Example 4.1:  Consider the Poisson SDE, linear in the state process ( ), with constant coefficients,  
( ) = ( ) ( )  + ( )  ( )                                                                                       (4.1)  
With initial condition ( ) = > 0, ( ) = 2 is called the drift or deterministic coefficient and ( ) =  is the jump 
amplitude coefficient of the jump term, with jump rate  .  
Using the determining equations (3.3)   (3.4) respectively we have  

[ ] (   − ) 
  − 

2  
Γ ( ) + = 0 .                                                                                                                             ( 3 . 12 ) 
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and  

  

  
  
  
  
Using (2.18) and (2.21) we get the temporal infinitesimal as   
  
( ) = + . (4.6)  
  
Substituting the temporal infinitesimal (4.6) in (4.3) and (4.5) respectively gives   
  

  

and  
 + 2 ( , ) − ( , 2 ) = 0. (4.8)  

2 
Differentiating (4.7) with respect to  gives   

  

  
Differentiating (4.8) with respect to  gives   

  

  
Differentiating (4.10) with respect to  gives   

  

  
Equation (4.11) implies   
  

  
  
Solving the differential equation (4.12) we get  
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( , ) = ( ) + ( ).                                                                                                                   (4.13)  
  
By substituting (4.13) into (4.9) we get   

  

  
When differentiating (4.14) with respect to time we 
get   

  

  
Solving the ordinary differential equation (4.15) implies ( ) is linear in  i.e.,  
  
( ) = + .                                                                                                                                    (4.16)  
  
After substituting (4.16) into (4.13) we arrive at the spatial infinitesimal  
  
( , ) = ( + ) + ( ).                                                                                                           (4.17)  
Substituting (4.17) into (4.14) results in    

  

  
Which implies that   
  

  

  
Solving the differential equation (4.19) for ( ) finally gives  
  

  

  
Therefore, using (4.20) the special infinitesimal (4.17) can be written as  
  

  

  
However, substituting (4.21) in (4.8) we have   
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Which can be simplified to get   
  

  

  
Further comparison of the coefficients of powers of  in (4.23), gives  
  

•    

• ∶ = 0.  
  
Thus, the spatial infinitesimal (4.21) finally 
becomes   

( , ) =   

  
So we have three symmetry generators corresponding to the infinitesimals   
  
  

  

  
The infinitesimal generators (4.25) give the following Lie bracket relations in Table 1 below  
  

,         

       −   
|16| 

        

    
|16| 

    

  
Table 1: Commentator table for the Lie algebra generators (4.25) 
The commentator table shows that the infinitesimals generators (4.25) is closed under Lie bracket 
relations and hence is a Lie algebra, where   is linear combination of    given as  

  

  
Example 4.2: Consider a Poisson driven stochastic differential equation  
  
( ) = − +   ( )  ℎ ≠ 0                                                                              (4.27)  
And initial condition (0) = .  
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Using the determining equations (3.3)   (3.4)respectively we have  
  

   
  
and  
  

  
  
Using equation (2.18) and (2.21) we get the temporal infinitesimal as  
  
( ) = + .                                                                                                                                (4.30)  
  
Using temporal infinitesimal (4.30) in (4.28) and (4.29) we respectively have  
  

 − 2 ( + ) = −                                                                       (4.31)  

  
And   

  

  
Differentiating (4.31) and (4.32) with respect to  respectively gives   

−  = 0                                                                                                                       (4.33)  
  
and  
  

  
  
Equation (4.34) implies   

  

  
Differentiating (4.35) with respect to  gives   

 = 0,                                                                                                                                         (4.36)  
  
Solving the differential equation (4.36) we have  
  
( , ) = ( ) + ( ).                                                                                                           (4.37)  
  
Substituting (4.37) into (4.33) implies    

  

− + 
  

2  
− − 2 ( , ) = −                                                 ( 4 . 28 ) 

  

2  
− = ( , + ) − ( , ) .                                                                                                                                                               ( 4 . 29 ) 
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Equation (4.38) implies ( ) is constant i.e.,  
  
( ) = ,                                                                                                                                    (4.39)  
  
Therefore, using (4.39) and (4.37) we have  
  
( , ) = + ( ).                                                                                                              (4.40)  
  
Substituting (4.40) into (4.32) gives this relation  
  
= 2 .                                                                                                                                       (4.41)  
  
Using (4.40) and (4.41), equation (4.31) gives   

 − 2   

  
Solving the differential equation (4.42) gives   

 + .                                                                            (4.43)  

  
Therefore, substituting (4.43) into (4.40) the spatial infinitesimal finally becomes   
  

 + .                                                               (4.44)  

Finally, the Poisson diffusion model admitted three dimensional symmetry infinitesimal generators;  
  

  

  
With the corresponding Lie bracket relations of the generators (4.45) given in Table 2 as  
  

,         

       −   
2 

        

        

  
Table 2: Commentator table for the Lie algebra generators (4.45)  
The Lie bracket relations in Table 2 above show that the infinitesimal generator (4.45) satisfied Lie  
commutative relation properties and hence forms a Lie algebra, where  
= −   is the linear combination of      .  

2  
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4. Conclusion   
Lie Symmetry analysis for It stochastic differential equations driven the by Poisson processes was carried 
out, infinitesimals of the Poisson process ( ) were derived using the moments invariance properties of the 
process. Determining equations were derived and found to be deterministic even though they describe 
stochastic differential equation. Examples are given to show how the determining equations can be used 
to find the symmetries, symmetries admitted by (1.1) are found to be fiber-preserving symmetries. Finally, 
the Lie bracket relation was obtained which shows that all the infinitesimal generators found are closed 
under the Lie bracket and hence they form a Lie algebra. Classification of the given examples is presented 
in Table 3. 
 
 
 
  

Group 
Dimension  

Basis Operators  Equations  

3  

  

  
( ) = ( ) 2  +   ( )  
  

3  ,  
=

 =   

( ) = − +   ( ),  
 ≠ 0  

  
Table 3: Lie Group Classification   
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