
International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 9 | 15

INVESTIGATING PROGRAMMING BASICS: A STUDY OF OPERATIONAL
SEMANTICS

Daniel K. Osei
Department of Computer Science, University of Nairobi, Kenya

 Abstract:
Computer programming is a fundamental tool in the world of computerization, and a solid grasp of its
foundational aspects, including syntax, semantics, and their implications, is essential. Syntax addresses
the grammatical structure of a program, while semantics delves into the meaning of programs that
adhere to grammatical correctness. Consider, for instance, the statement: "c:=a; a:=b; b:=c"
(Expression(i)). A syntactic analysis of Expression(i) reveals three distinct statements, each separated
by semicolons. Each statement consists of a variable, an assignment operator (":="), and an expression,
which is also a variable. In contrast, the semantics of this statement dictates the exchange of values
between variables a and b, with c ultimately receiving the value of b (Nielson and Nielson, 2007).
Semantics, in the context of programming languages, encompasses the computational meaning of each
program. This field is deeply involved in the rigorous mathematical examination of programming
language meanings and models of computation (Moses, 2006). Semantics serves multiple purposes,
from understanding the intricacies of specific programming languages to establishing a foundation for
verifying the properties of particular programs. Additionally, it facilitates the expression of design
choices and provides insights into the interaction between various language features (Sewell, 2008).
This paper explores the vital concepts of syntax and semantics in computer programming, shedding
light on their significance and practical applications.

Keywords: Computer programming, syntax, semantics, program analysis, programming language
semantics.

1.1 Introduction
Programming is a major tool for computerization and there is need to understand its basics; the how, the
effects and the assertions. The syntax of a program deals with the grammatical structure of the program
while the semantics deals with the meaning of grammatically correct programs. For instance, consider the
following statement: c:=a; a:=b; b:=c Expression(i)
A syntactic analysis of the program statement given in Expression (i) above consists of three statements
separated by ‟;‟. Each of these statements has a variable, followed by an assignment statement,‟:=‟, and an
expression which is also a variable. Whereas, the semantics of the statement expresses that the program
is to exchange the values of variables a and b and setting c to the final value of b (Nielson and Nielson,
2007).
A semantics for a programming language models the computational meaning of each program (Moses,
2006). It is also concerned with the rigorous mathematical study of the meaning of programming
languages and models of computation. Semantics can be used to understand a particular language and as
a foundation for proving properties of particular programs. It can also be used as a tool for expressing
design choices, understanding language features and how they interact (Sewell, 2008).

https://ethanpub.online/Journals/index.php/E23

International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 10 | 15

There are three major levels of semantics namely static semantics which models compile-time checks,
dynamic semantics which models run-time behaviour and semantic equivalences between programs
which may abstract from details of models (Moses, 2006). Dynamic semantics is further subdivided into
operational semantics, denotational semantics and axiomatic semantics (Nielson and Nielson, 2007;
Hennessy, 1991). While operational semantics deals with how the effect of a computation is produced,
denotational semantics models the meanings by mathematical objects that represent the effect of
executing the constructs and axiomatic semantics deals with the specific properties of the effect of
executing the constructs. The formal semantics of a language is given by a mathematical model that
describes the possible computations described by the language. It is concerned with rigorously specifying
the meaning, or behaviour, of programs and pieces of hardware among others (Nielson and Nielson, 2007;
Plotkin, 1982).
Formal semantics is capable of revealing ambiguities and also forms the basis for implementation, analyses
and verification of programs.
2.1 Basic Concepts of Operational Semantics (OS)
An operational explanation of the meaning of a construct tells how to execute it (Abramsky and Hankin,
1987; Aho, Sethi and Ullman, 1986; Jones, 1980). To execute a sequence of statements separated by „;‟ as
seen in Expression (i), the individual statements are being executed one after the other and from left to
right. To execute a statement consisting of a variable followed by the assignment operator „:=„ and another
variable, the value of the second variable is determined and assigned to the first variable. The execution of
a program in a state where a has the value 3, b the value 5 and c the value 0 is done by the following
derivation sequence:
 (i). c:=a; a:=b; b:=c, [a→3, b→5, c→0] 〉 (ii). a:=b; b:=c, [a→3, b→5, c→3] 〉

 (iii). b:=c, [a→5, b→5, c→3] 〉

 (iv). [a→5, b→3, c→3] 〉
In the first step, the statement c:=a is executed and the value of c is changed to 3 whereas those of a and b
are unchanged. The remaining program is now a:=b; b:=c. After the second step, the value of a is 5 and we
are left with the program b:=c. The third and final step of the computation changes the value of b to 3.
Hence, the initial values of a and b have been exchanged, using c as a temporary variable. When this kind
of operational semantics is formalized, it is often referred to as structural operational semantics (or small-
step semantics). An alternative operational semantics is called natural semantics (or big-step semantics)
and it differs from the structural operational semantics by hiding more execution details. Figures 1 and 2
show the rules for both structural operational semantics and natural semantics respectively.
2.2 Structural Operational Semantics (SOS)
Structural operational semantics (SOS) provides a framework to give an operational semantics to
programming and specification languages. SOS generates a labelled transition system, whose states are the
closed terms over an algebraic signature, and whose transitions between states are obtained inductively
from a collection of so-called transition rules of the form: premises conclusion
Structural operational semantics provides transition rules for the evaluation of expressions and execution
of commands as seen in Figure 1. If the number of premises is zero, then, the line is omitted, and we refer
to the rule as an axiom. (Aceto, Fokkinky and Verhoefz, 2001; Slonneger and Kurtz, 1995).

(1) [ass] 〈x:=a,s〉→ s(x→A[a]s) sos

https://ethanpub.online/Journals/index.php/E23

International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 11 | 15

(2) [skip] 〈skip, s〉 → s
sos
 〈S , s〉 → 〈S' , s'〉
1 1
(3) [comp 1] 〈S ; S , s〉→ 〈S' ; S , s'〉 sos 1 2 1 2

 〈S , s〉→ s'
1
(4) [comp2] 〈S ; S , s〉→ 〈 S , s'〉 sos 1 2 2

tt
(5) [if] 〈if b then S else S ,s〉 → 〈S , s〉= if B[b]s = tt sos 1
 2 1 ff
(6) [if] 〈if b then S else S ,s〉 → 〈S , s〉= if B[b]s = ff sos 1
 2 2
(7) [while] 〈while b do S, s〉→ 〈if b then (S; while b do S) else skip s〉
sos
Note: sos means Structural Operational Semantics.
Figure 1: Structural Operational Semantics (Source: Nielson and Nielson,
1999).

The role of a statement in „While‟ is to change the state. Given that x is bound to 5 in a state, s, and the
statement x := x + 1 is executed, then, a new state, s0, where x is bound to 6 is produced. So, while the
semantics of arithmetic and boolean expressions only inspect the state in order to determine the value of
the expression, the semantics of statements will modify the state as well. (Nielson and Nielson, 1999;
Despeyroux, 1986).
For the language „While‟, one can easily specify both kinds of operational semantics and they will still be
equivalent. For the two kinds, the meaning of statements is specified by a transition system which has two
types of configurations as shown below:
S, s〉representing that the statement S is to be executed from the state s, and s representing a final

state.
The transition relation will then describe how the execution takes place. The difference between the two
approaches to operational semantics amounts to different ways of specifying the transition relation. An
example of how SOS specifies the translation relation is given below:
Consider the same example earlier given in Expression (i): (c:=a; a:=b); b:=c
Let s0 be the state that maps all variables except a and b to 0
Let s0 a =3 and s0 b =5
Then, the derivation sequence is as follows:
(i) 〈(c:=a; a:=b); b:=c, s0〉

(ii) 〈a:=b; b:=c, s0[c→3]〉

(iii) 〈b:=c, (s0[c→3])[a→5]〉 (iv) 〈((s0[c→3])[a→5])[b→3]〉

Each of the above steps has corresponding trees that explain why they take place. For step (i):

https://ethanpub.online/Journals/index.php/E23

International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 12 | 15

 〈(c:=a; a:=b); b:=c, s0〉→ 〈a:=b; b:=c, s0[c→3]〉
The derivation tree is shown below:
 〈c:=a, s0〉→ s0[c→3]

 〈c:=a; a:=b),s0〉→ 〈a:=b,s0[c→3]〉

 〈(c:=a; a:=b); b:=c, s0〉→ 〈a:=b; b:=c, s0[c→3]〉
The above tree has been constructed from the axiom [ass] and [comp1] (from Figure 1). Hence, it is seen
here that
sos sos details of execution are explained and this is why SOS is called small-step semantics.
2.3 Natural Semantics (NS)
In a natural semantics, the relationship between the initial and the final state of an execution is of utmost
concern. As mentioned earlier, it is defined as a binary relation between configurations as explained under
SOS. Transitions from the initial pair to the terminal state are denoted by:
 〈S, s〉 → s'.
The execution of S from s will terminate and the resulting state will be s'. Natural Semantics is defined by
the set of derivations or rules shown in Figure 2 (Nielson and Nielson, 1999; Bakel, 2002). To show the
translation relation of natural semantics, consider the same example earlier given in Expression (i): (c:=a;
a:=b); b:=c Let s0 be the state that maps all variables except a and b to 0
Let s0 a =3 and s0 b =5
Then, the derivation sequence is as follows:

 〈c:=a, s0〉→ s1 〈a:=b, s1〉→ s2

 〈c:=a; a:=b), s0〉→ s2 〈b:=c, s2〉→ s3

 〈(c:=a; a:=b); b:=c, s0〉→ s3
From the above derivation, the following abbreviations are used: s1 = s0[c→3] s2 = s1[a→5]
 s3 = s2[b→3]
The derivation tree has three leaves denoted as: 〈c:=a, s0〉→ s1, 〈a:=b, s1〉→ s2 and

〈b:=c, s2〉→ s3, corresponding to the tree applications of the axiom [assns].

AYORINDE, Ibiyinka Temilola 21

https://ethanpub.online/Journals/index.php/E23

International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 13 | 15

(1)
(2)

(3)

(4)

(5)

(6)
(7)

[ass]
ns
[skip]
ns

[comp]
ns

tt
[if]

ns

ff
[if]

ns

tt
[while]
ns ff
[while]
ns
Note: ns
means
Natural
Semantics.

〈x:=a,s〉→ s(x→A[a]s)

〈skip, s〉 → s

〈S , s〉 → s', 〈S , s'〉 → s''
1 2
〈S ; S , s〉→ s'‘
1 2
〈S , s〉 → s‘_______ if B[b]s = tt
1
〈if b then S else S ,s〉 → s‘

1 2
 〈S , s〉 → s‘_______ if B[b]s = ff
2
〈if b then S else S ,s〉 → s‘
1 2
〈S , s〉 → s‘, 〈while b do S, s'〉→ s'‘ if B[b]s = tt
1
 〈while b do S, s〉→ s'‘

〈while b do S, s〉→ s if B[b]s = ff

Figure 2: Natural Semantics (Source: Nielson and Nielson,
1999).

The rule [compns] has been applied twice. One instance is:
 〈c:=a, s0〉→ s1, 〈a:=b, s1〉→ s2

 〈c:=a; a:=b), s0〉→ s2

This instance has been used to combine the leaves 〈c:=a, s0〉→ s1 and 〈a:=b, s1〉→s2 with the internal

node labelled 〈c:=a; a:=b), s0〉→ s2. The other instance is:

 〈c:=a; a:=b), s0〉→ s2, 〈b:=c, s2〉→ s3

 〈(c:=a; a:=b); b:=c, s0〉→ s3

This instance has been used to combine the internal node 〈c:=a; a:=b), s0〉→ s2 and the leaf

〈b:=c, s2〉→ s3 with the root 〈(c:=a; a:=b); b:=c, s0〉→s3.

https://ethanpub.online/Journals/index.php/E23

International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 14 | 15

Hence, this example shows that, unlike SOS, NS actually hides certain details and thus, the name big-step
semantics. The transition between states is of utmost concern here. Despite the difference in the
specification of the transition relation used, both SOS and NS gave equivalent results. Also, the examples
given also affirms that Formal semantics helps to proof the correctness of programs. (Ganor and Juhasz ,
2007).
3. Conclusion
This paper has been able to show the interest of operational semantics by enumerating how the effect of a
computation is produced. While structural operational semantics has described how the individual steps
of the computations take place, natural semantics has described how the overall results of execution are
obtained. I hereby recommend that “Formal Semantics” should be taken as a course by computer science
students in tertiary institutions so as to enhance a better performance in their programming work thereby
enhancing the production of indigenous software that meets the specific needs of the people in our
community.
References

Abramsky, S. and Hankin, C. (1987).Abstract Interpretation of Declarative Languages, Ellis Horwood.

Aceto, L., Fokkinky, W. and Verhoefz, C. (2001). Structural Operational Semantics

Aho, A.V., Sethi, R. and Ullman, J.D. (1986). Compilers: Principles, Techniques and Tools, Addison-Westley.

Bakel, S. V. (2002). Operational Semantics.Course Notes. Department of Computing Imperial College of
Science, Technology and Medicine

Despeyroux, J. (1986). Proof of translation in natural semantics, Proceedings ofsymposium on logic in
Computer Science, Cambridge, Massachusetts, USA.

Ganor , R. and Juhasz , U. (2007). Operational Semantics.Class notes for a lecture given by MoolySagiv, Tel
Aviv University, 24/5/2007

Hennessy, M. (1991). The Semantics of Programming Languages: An Elementary Introduction using
Structural Operational Semantics, Wiley.

Jones, C.B. (1980). Software Development: A Rigorous Approach, Prentice-Hall.

Moses, P. D. (2006). Formal Semantics of Programming language.Electronic Books in Theoretical Computer
Science. 148 (2001) 41-73.

Nielson, H.R. and Nielson F. (1999). Semantics With Applications: A Formal Introduction.

Nielson, H. R.and Nielson, F. (2007). Semantics with Applications: An Appetizer.

Plotkin, G.D. (1982). An Operational Semantics for CSP, in: Formal Description of Programming Concepts
II, Proceedings of TC-2 Work. Conf. (ed. Bjorner D.), North Holland.

https://ethanpub.online/Journals/index.php/E23
https://books.google.com/books?id=oPi0yERDUeYC
https://books.google.com/books?id=oPi0yERDUeYC
https://books.google.com/books?id=oPi0yERDUeYC

International Journal of Biometrics, Image Processing and Computing Research
ISSN: 2997-688X |
Volume 11 Issue 3, July-September, 2023
Journal Homepage: https://ethanpub.online/Journals/index.php/E23
Official Journal of Ethan Publication

International Journal of Biometrics, Image Processing and Computing Research

P a g e 15 | 15

Sewell, P. (2008). Semantics of Programming Languages.Computer Science Tripos, Part 1B.2008–9,
Computer Laboratory, University of Cambridge.

Slonneger, K. and Kurtz, B. L. (1995). Formal Syntax and Semantics of Programming Languages: A
Laboratory-Based Approach. Addison-Wesley, Reading, Massachusetts.

Springer. ISBN 978-1-84628-692-6.

https://ethanpub.online/Journals/index.php/E23
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number

