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 Abstract:  
This paper introduces a novel approach for parameter estimation within the context of diffusion 
models. While composite quantile regression (CQR) has been applied effectively in classical linear 
regression models and more recently in general non-parametric regression models, its application in 
diffusion models has been limited. This research bridges this gap by extending CQR to estimate 
regression coefficients in diffusion models. 
The diffusion model is considered within the framework of a filtered probability space (Ω, F, (Ft)t≥0, 
P), represented as: 
dXt = β(t)b(Xt)dt + σ(Xt)dWt, where β(t) represents a time-dependent drift function, Wt is the standard 
Brownian motion, and b(⃗) and σ(⃗) are known functions. Notably, Model (1.1) encompasses several 
well-known option pricing and interest rate term structure models, including Black and Scholes (1973), 
Vasicek (1977), Ho and Lee (1986), and Black, Derman, and Toy (1990), among others. 
This study extends the applicability of CQR to diffusion models, offering a powerful tool for estimating 
regression coefficients in this context. It fills a significant research gap, providing a promising avenue 
for enhanced parameter estimation in the field of diffusion models. 
  
Keywords: Composite quantile regression, parameter estimation, diffusion models, option pricing, 
interest rate term structure.  
 

  
 
1. Introduction   
Composite quantile regression (CQR) is proposed by Zou and Yuan (2008) for estimating regression 
coefficients in classical linear regression models. More recently, Kai el.(2010) considers a general non-
parametric regression models by using CQR method. However, to our knowledge, little literature has 
researched parameter estimation by CQR in diffusion models. This motivates us to consider estimating 
regression coefficients under the framework of diffusion models. In this paper, we consider the diffusion 
model on a filtered probability space ( ,F,(Ft )t 0,P)  
(1.1) dXt (t)b(X t )dt (X t )dWt ,   

(t) Wt is the standard Brownian motion. b( ) and ( )  are known  
where is a time-dependent drift function and functions. Model (1.1) includes many famous option pricing 
models and interest rate term structure models, such as Black and Scholes(1973), Vasicek(1977), Ho and 
Lee(1986), Black, Derman and Toy (1990) and so on.   

(t) 
We allow being smooth in time. The techniques that we employ here are based on local linear fitting (see 
Fan and Gijbels(1996)) for the time-dependent parameter. The rest of this paper is organized as follows. 
In Section 2, we propose the local linear composite quantile regression estimation for the drift parameter 
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and study its asymptotic properties. The asymptotic relative efficiency of the local estimation with respect 
to local least squares estimation is discussed in Section 3. The proof of result is given in Section 4.  
2. Local estimation of the time-dependent parameter  
{X ti ,i 1,2, ,n 1} t1 t2 tn 1.  Denote  
Let the data  be equally sampled at discrete time points,  
Yti Xti 1 X ti , ti Wti 1 Wti , and i ti 1 ti.Due to the independent increment property of 
Brownian motion  
Wt , ti are independent and normally distributed with mean zero and variance 1 i.. Thus, the discretized 
version of the model (1.1) can be expressed as  
(2.1) Yti (ti )b( X ti ) i (X ti ) iZti , 
Zti 1/ i .The first-order discretized  
where are independent and normally distributed with mean zero and variance approximation error to the 
continuous-time model is extremely small according to the findings in Stanton (1997) and Fan and 
Zhang(2003), this simplifies the estimation procedure.  
Suppose the drift parameter (t)   to be twice continuously differentiable in t . We can take (t) to be local  
t 0 , we use the approximation linear fitting. That is, for a given time point  
(2.2) (t) (t0 ) '(t0 )(t t0 )   
fort in a small neighborhood of t0 . Let h denote the size of the neighborhood and K( ) be a nonnegative 
weighted function. h and K( ) are the bandwidth parameter and kernel function, respectively. Denoting 0 

= (t0 ) and  
1 '(t0 ) , (2.2) can be expressed as   

(2.3) (t) 0 1(t t0 ) .   
(t) 

Now  we  propose  the  local  linear  CQR  estimation  of  the  drift  parameter 
 .  Let  
k 

k =  
k (r) kr I{r 0},k 1,2, ,q   ,which are q check loss functions at q quantile positions: q 1 . Thus,  

(t) 
following the local CQR technique,   can be estimated via minimizing the locally weighted CQR loss  
  
q n Y ti 1 
(2.4) { k { [b(Xti )] 0k 1(ti t0)}Kh(ti t0 )} 
ti t 0 ) Kh (ti t0 )=K( where h and h is a properly selected bandwidth. Denote the minimizer of the locally 
weighted  
( ˆ01, ˆ02, , ˆ0q, ˆ1)T 
CQR loss (2.4) by . Then, we let  
  
q 
(2.5) ˆ(t0) 1 ˆ 0k 

 

                                                      
1 k 1 i 1 i ,  
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q   k 1   
  
We refer to ˆ(t0 ) as the local linear CQR estimation of (t0 ) , for a given time point t 0 . To obtain the  

ˆ( ) 
estimated function , we usually evaluate the estimations at hundreds of grid points.   
In order to discuss the asymptotic properties of the estimation, we introduce the following assumptions.  
Throughout this paper, M denotes a positive generic constant independent of all other variables.  
  
b( ) ( ) 
(A1) The functions   and  in model (1.1) are continuous.  
  
K ( ) 
(A2) The kernel function  is a symmetric and Lipschitz continuous function with finite support  
[ M , M ] 
.   
h=h(n) 0   nh 0 .  
(A3) The bandwidth  and  
  
F( ) f ( ) 
Let  and be the cumulative density function and probability density function of the error, g( ) [a,b] 
respectively.  denotes the density function of time, usually a uniform distribution on time interval  . 
Define  

j u jK(u)du, j u jK2 (u)du, j 1,2,  
  
  
and  
  
1 q q kk ' 
(2.6) R(q) 2    

 
 

q k 1 k ' 1 f (ck ) f (ck ' )   
  
ck F 1 ( k ) and kk ' = k k ' k k ' . where 
  

ˆ(t0 )   
Theorem 2.1 Under assumptions (A1)-(A3), for a given time point t0 , the local CQR estimation  
from (2.5) satisfies,  
  

(2.7) E[ ˆ(t0) ] (t0) ''(t0) 2 h2 o(h2) 

  
2 
(2.8) Var[ ˆ(t0) ] 1 0 ( Xt )   R(q) o( 1 ) nh g(t0)b (X t0   ) nh 
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0 0 5 5  t  

 
 

  
  
and, as n ,  
2 
(2.9) nh{ ˆ(t0) (t0) 1 ''(t0) h2} L N (0, 0 (X t )   R(q)) 

 
2 g(t0)b (X t0   ) 

L means convergence in distribution.  
Where  
3. Asymptotic relative efficiency   
We discuss the asymptotic relative efficiency(ARE) of the local linear CQR estimation with respect to the 
local linear least squares estimation(see Fan and Gijbels(1996)) by comparing their mean-squared 
errors(MSE).From  

ˆ(t0 )   . That is, theorem 2.1, we obtain the MSE   
2 
(3.1) MSE[ ˆ(t0) ] [1 ''(t0) 2]2 1 0 (X t )   R(q) o(h4 1 ) 

 
 
 

2 nh g(t0)b (X t0   ) nh 
  
  
We obtain the optimal bandwidth via minimizing the MSE (3.1), denoted by  
  
hopt (t0) ] [ 0 2( Xt0 )R(q)   ] 15n 5 1 
2 2 
g(t0)b ( Xt0 )[ ''(t0) 2 ] 
.  
  

(t0 ) , denoted by ˆLS (t0 )   , is The MSE of the local linear least squares estimation of 
  
2 
(3.2) MSE[ ˆLS (t0) ] [1 ''(t0) 2]2h4 1 0 ( X t )   o(h4 1 ) 

 
 
 

2 nh g(t0)b ( Xt0   ) nh 
   
and the optimal bandwidth is  
  

2( X ) 1 1 
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opt 
hLS (t0) ] [ 2 2   ] n 
g(t0)b ( Xt0 )[ ''(t0) 2 ] 
.   
By straightforward calculations, we have, as n ,   
MSE[ ˆLS (t0) ] [R '(q)]  

 
MSE[ ˆ(t0) ]     
  
Thus, the ARE of the local linear CQR estimation with respect to the local linear least squares estimation is  

 

(3.3) ARE( ˆ(t0), ˆLS(t0 )) [R(q)]   
  
(3.3) reveals that the ARE depends only on the error distribution. The ARE we obtained is equal to that in 
Kai el.(2010).  
  
ARE( ˆ(t0 ), ˆLS (t0 ))  for some commonly seen error distributions. Table 1 in Kai Table 3.1 displays 
el.(2010) can be seen as ARE for more error distributions.  
Table 3.1: Comparisons of ARE( ˆ(t0 ), ˆLS (t0 ))  for the values of q  
  

Error  q 1 q 5  q 9 q 19 
  

q 99 
  

N(0,1) 
  

0.6968  0.9339  0.96590.9858  0.9980  

Laplace  1.7411  1.2199  1.1548  1.0960  1.0296  

0.9N(0,1) 0.1N(0,102   

) 

4.0505  4.9128  4.70693.5444  1.1379  

 
From Table 3.1, we can see that the local linear CQR estimation is more efficient than the local linear least 
squares estimation when the error distribution is not standard normal distribution. When the error 
distribution is  
N(0,1) and q 1,5,9,19,99 , the ARE( ˆ(t0 ), ˆLS (t0 )) is very close to 1, which demonstrates that the local 
linear  
CQR estimation performs well when the error conforms to the standard normal distribution too.  
4. Proof of result  

S11 S 12  
S   
In order to prove theorem 2.1, we first give some notations and lemmas. Let S21 S 22 , and 

11 12  
  

21 22 , where S11 is a q q diagonal matrix with diagonal elements f (ck ),k 1,2, ,q , 
q 
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S f (c ) 
S12 ( 1 f (c1), 1 f (c2 ), , 1 f (cq ))T ,   S21 S12T and 22 2 k 1 k . 11 is a q q matrix with (k,k ') - 

0 k ,k ' ,k,k ' 1,2, ,q, 12 ( 1 kq' 1 1k ' , 1 qk ' 1 2k ' , , 1 kq' 1 qk ' )T   21= 12 '
 22 2 kq,k ' 1 kk ' 
element   ， and .  
  

 (X )  
u nh (t )  t0 c ,v h 
nh '   (t )  

 
 

1  ti t0   di, k i,k  uk 
 v  

and nh  h   .Write 
(Xti ) (Xt0 )  

ck   r i 
b(Xti ) b(Xt0 )   with ri (ti ) (t0 ) ' (t0 )(ti 

t0 ) .  

Define i,k  to  be  ti k i,k titi k .  Let n 11 12 1q
 1(q 1)  with 

 1 n  ,q w1( q 1) 1 q n i ,kKh(ti t0 )   ti t 0 
w1k  i,k Kh(ti t0),k 1,2, 
nh i 1 ，and nh k 1 i 1 h . 
Lemma 4.1 Under assumption (A1)-(A3), minimizing (2.4) is equivalent to minimizing the following term:  
q n i*,k Kh(ti t0)  q n i*,kKh(ti t0)(ti t0 )   q 
Ln( ) uk v Bn,k   ( ) 
k 1 i 1 k 1 i 1k 1   
  

 I Z c d 
     T 

b(X ) (X ) W (w ,w , ,w ,w ) 
T Sn （Wn*）T op (1) 

  
=(u ,u , ,u , ) 

1 1 q with respect to  , where  
  

 
Bn,k i n1 Kh ti t0   i,1 I ti k d i,1b Xti ti zb Xttii - I ti
 k di,1b Xti ti dz   Sn SSnn,,1121 SSnn,,1222 ，  
0 Z c  

 
 

                                                      

1 X t  

k 
Furthermore, let 

0k 0 k 
 b(Xt0 )    

1 0 
,   

nh h nh 
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  X X  Z c X ，  

  
n b Xti  

Sn,11 Kh ti t0 i S11 with i 1   nh X t , Sn,21 SnT ,12 ，  

 
  
Sn,12 n Kh ti t0 ti t0 b X ti i f   c1 , f c2 , , f cq T 

 
i 1 h nh X t  ，  

  
q ck n Kh ti t0 (ti 2t0 )2 b X ti i  

Sn,22  f 

 
and  h nh Xt .  
k 1 i 1   
The proof of lemma 4.1 is similar to lemma 2 and lemma 3 in Kai el.(2010).  
Proof of theorem 2.1   
Using the results of Parzen(1962), we have  
  
1 n ti t0 j 

Kh ti t0  j P g t0 u j nh i 1 h     

 
 

  
P means convergence in probability. Thus,  

where 
  

g t0 b Xt0  g t0 b Xt0 S11 
Sn P S    

X t0  Xt0  S21 

S12  
S 

22  
.  

 
According to lemma 4.1, we have   
L 1 g t1 b X   t0 T S Wn* T op 1  
Ln Wn* T  converges in probability to the convex function Since the convex function  
1 g t0 b X t0 T 

S  

 
2 X t  
0 , according to the convexity lemma in Pollard(1991), for any compact set, the quadratic  
L    
                                                      

1 .   
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approximation to   holds uniformly for  . Thus, we have  
  
ˆ g t0 b X t0 S 1Wn* o p 1  

n 

 
X t    

0 .  
  
Define i,k I zti ck k  and  Wn w11,w12, w1q,w1 q 1 T    with 
w1k 1 n   i,kKh ti t0 ,k 1,2, ,q w1 q 1 1 q n i,k Kh ti t0 ti t0 
nh i 1 ，and nh k 1 i 1 h .  
By using the central limit theorem and the Cramer-Wald theorem, we have  
  
Wn E(Wn)   N (0,I ) 
(4.1)  
L ( q 1) (q 1) Var(Wn) 
. 
  
Notice that Cov( i,k , i,k ' ) kk '  andCov( i,k , j,k' ) 0 Ifi j . We have  
  

1 n 2 (ti t0 ) j 
Kh (ti t0 ) j P   g(t0 )vj. nh i 1 h     

 
  
  
Var(W ) g(t ) .   W N(0,g(t ) ) 

 
 

 
Thus, n 0 . Combining the result (4.1), we have n L 0 . Moreover, we have  
1 n 
* 2 * 
Var(w1k w1k ) Kh (ti t0)Var( i,k i,k   ) 
nh   i 1   
  
1 n 2 | di,k | b(Xti ) 

Kh (ti t0 )[F(ck ) F(ck )] p (1) nh i 1 (Xti ) 
  
And  
  
n q 
* 1 2 ti t 0 * 
Var(w1(q 1) w1(q 1)) Kh (ti t0) Var( i,k i,k   ) 
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nh i 1 h   k 1   
  
q2 n 2 ti t 0 | di,k | b(Xti ) 

 Kh (ti t0 ) maxk[F(ck  ) F(ck )] p (1). nh i 1 h (Xti ) 

 
 

  
  
Var(wn* wn ) p * 
Therefore,  (1) . Using Slutsky's theorem yields wn L N (0, g(t0 ) ).   
  
Thus,   

(Xt0 ) 1 * 2 (Xt )   1 1 
n S E(Wn ) L N(0, S S ) g(t0 )b(Xt ) g(t0 )b (Xt ) 

 
0 0   
  

 
 

So the asymptotic bias of ˆ(tO ) is:  
  
bias( ˆ(tO )) 1 (Xt0 )   q ck 1   ( Xt0 )   eqT 1(S11) 1E(W1 * n ) q b(Xt0 ) k 1 q nh   g(t0)b(Xt0   ) 
  
  

1 (Xt0 ) q ck 1 (Xt0 )   n Ki q 1   F(ck di,kb(Xt0 ) ) F(ck ) , q b(Xt0 ) k 1 q nh g(t0 )b(X t0 
) i 1 k 1 f (ck ) (X ti )   where  

 
 

  
Ki Kh(ti t0 ),eq 1 (1,1, ，1)T and W1*n (w11* ,w12* ,...w1*q)T   .  
  
q 

c 
Z k 
Note that ti is symmetric, thus k 1 

0 
, and  

  
1 

q 1  di,kb(Xti )  rbi (Xti   ) 
F(ck  ) F(ck )  (1 oP(1)). q k 1 f (ck )  (Xt ) (Xt ) 
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i i 
  
Therefore,  
  

   

1   (Xt0 ) n rbi (X ti ) 
bias( ˆ(tO ))  Ki (1 oP (1)). 
nh   g(t0 )b(X t0 ) i 1 (X ti ) 
n   rb(X ) g(t ) '' (t )b(X ) 

  
Since  
  
  

  1 

Ki i ti 0 0 t0 2 h2 (1 oP (1)). We have  
nh i 1 (X ti ) 2 (X t0 )   

  

 
 

 
    

bias( ˆ(t0 )) '' (t0 ) 2h2 oP (h2 ).   and  
  
  

2 (X )     
Var[ ˆ(t0 )] 1 2 t0 12 eqT 1(S 1 S 1)11eq 1 op( 1 ) nh g(t0 )b (X t0 ) q nh  

 
1 v0 2 (X t )   R(q) op( 1 ).     nh g(t0 )b (X t0 ) nh   

 
 

  
This completes the proof.  
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