
Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 1 | 13

EXPLORING AGILE RESPONSIVENESS IN SOFTWARE DEVELOPMENT
PROCESSES

1Emily Jane Roberts and 2Benjamin William Harper

1Associate Researcher, University of Melbourne
2Lead Developer, Tech Solutions Ltd., Australia

 Abstract:
Experiments play a crucial role in high school physics education, providing a solid foundation for
establishing concepts and discovering laws in physics. Experimental teaching is an essential component
of the physics curriculum, as it aids students in understanding fundamental principles, developing basic
skills, and cultivating scientific thinking. Relying solely on textbook knowledge and teacher lectures is
insufficient for students to thoroughly grasp and comprehend physics concepts. By incorporating
physics experiments, students can effectively integrate theoretical knowledge with practical
exploration, facilitating the transformation of textbook knowledge into personal understanding. This
article presents a specific simulated apparatus for high school physics velocity experiments, aiming to
improve the accuracy and convenience of simulating physics velocity experiments through equipment
enhancements.

Keywords: Physics; Velocity Experiment; Simulated Apparatus

Abstract: In the wake of dynamic business demands and the lessons learned from the COVID-19 pandemic,
top-performing organizations are embracing resilience, agility, and innovation. Resilience is vital for
maintaining service levels through disruptions, while agility is crucial for seizing opportunities and
navigating disruptions. Innovation entails leveraging IT to enhance organizational efficiency and align
technology initiatives with business goals. However, a new facet, urgency, has emerged in software
development.
Urgency represents the time it takes for an unforeseen trigger to significantly impact business operations,
necessitating swift action to mitigate its effects. Urgent software development, born out of necessity during
COVID-19, has become a focal point.
In today's pandemic-driven economic landscape, organizations are compelled to compete with the same
urgency exemplified by Operation Warp Speed (OWS), which accelerated the development and distribution
of COVID-19 countermeasures. This urgency has transcended government initiatives and now drives
companies seeking to thrive in the contemporary business environment.
Keywords: Urgency, resilience, agility, innovation, software development.

Introduction
In top-performing organizations, urgency is impacting the historical response to dynamic business
requirements. If COVID-19 has taught us anything, it is the importance of resilience, agility, and innovation.
Resilience is required for an organization to maintain acceptable service levels through, and beyond, severe
disruptions to its critical business services and processes. Agility is essential to respond efficiently to
opportunities and disruptions. Innovation means using information technology (IT) in new ways to create

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 2 | 13

a more efficient organization and improve alignment between business goals and technology initiatives. As
important as these concepts are, a fourth characteristic has emerged in software development – urgency.
Urgency is the time it takes an unexpected trigger to have a significant impact on business and establish a
priority forcing action to respond to the trigger and affect the impact and outcomes. During COVID-19,
urgent software development was founded out of “the mother of necessity.”
Organizations today have a renewed imperative to compete in an economic environment driven by a global
pandemic. Operation Warp Speed (OWS) used the resources of the federal government and the U.S. private
sector to accelerate the testing, supply, development, and distribution of safe and effective vaccines,
therapeutics, and diagnostics to counter COVID-19 by January 2021.(Operation Warp Speed, 2021)A
similar urgency is realized by companies operating and competing in today’s economy.
Objectives
Urgent software development (USD) focuses on the delivery of software solutions in a continuous manner
outside of a traditional cyclical approach for software projects. USD addresses projects requiring
immediate deployment but not a crisis response to an emergency state.
USD relies solely on agile discipline to implement continuous timelines and is distinguished from
traditional development that is scheduled in line with business cycles such as planning, accounting,
financial, manufacturing, and service cycles.
This article will:
1. Describe the ecosystem and components of urgent software development.
2. Define a maturity model for companies to follow.
3. Outline architectural implementation for ecosystem nodes.
Urgent Software Development Comes to the Forefront
Urgent software development is an ecosystem that enables the development, implementation, and
operation of business solutions in response to unknown events and triggers within unprecedented, short
duration deployment (timing) windows. In urgent-capable organizations, USD replaces methodical
planning and reactionary, putting-outfires, panic culture with leadership, governance, methodologies, and
tools and practices enabling effective response to urgent requirements.
What role does USD play in top-performing, urgent organizations? To begin with, it lowers or eliminates
constraints and barriers associated with traditional software development. With the right management,
methodologies, tools and techniques, way of working, IT services, and test-driven environments,
organizations move rapidly, instead of pausing, to overcome imperfections in software development.
Ultimately, an organization aims to realize the “urgent” level of USD maturity, where software development
merges with a continuous time context. This level of software development requires a succession of
changes in how the organization executes software development and how it applies resources to achieve
its goals.
To achieve urgent software development capability, several characteristics define the organizational
environment needed for continuous development. Some of these characteristics are fundamental
prerequisites, and others drive urgency. USD organizations master four critical characteristics:
1. Priority: able to differentiate among a portfolio of installed applications and software development
initiatives. Not all applications and software initiatives are urgent ones.
2. Awareness: able to assimilate the most relevant status of software assets. Software development
status can vary from non-urgent to urgent.

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 3 | 13

3. Correctability: able to synthesize and establish critical aspects of software development information
to know accurate software status.
4. Integration: able to synthesize software development information within an enterprise architecture
and delineate cross functional linkages and acknowledge the architectural dependencies.
As important as the fundamental characteristics are, they alone are insufficient for urgency. Urgent-
performing organizations excel at several additional characteristics:
1. Changing: able to integrate time as the critical characteristic of operational execution. Time drives
when and how the state of business operation ebbs and flows.
2. Creating: able to alter the status quo creating an environment receptive to innovation and change.
3. Predicting: able to prepare in advance of anticipated events and triggers by analyzing market,
business, and technical outcomes. This analysis yields proactive redefinition of new goals, strategies, and
tactics.
4. Empowering: able to give employees authority to make decisions and act in the best interest of the
organization.
Urgent software development is constructed from new and emerging methodologies, policies, procedures,
and practices. To effectively execute urgent software development, a complete ecosystem must first be in
place so that an individual USD node does not become a roadblock. Another aspect of urgent software
development is to ensure all the nodes are in place prior to it being a necessity because it is not something
an organization wants to piece together on the fly. This premise introduces a fifth critical factor to USD –
preparation. Preparation addresses nonproduction software versus production software because
production software needs a “superhighway” pathway to ensure compliance standards are met. A pipeline
should be implemented to ensure the integrity, performance and accountability of work conducted at light
speed with high levels of risks to the business. Urgent software development is a reimagination of
development and testing via test-driven environments which finally shed waterfall concepts to support
urgency.
How Urgent Is Urgent?
There are different types of software development projects, and projects can be classified according to
software development urgency. Many software development projects are elective. Some planned software
development is scheduled within an operational window that is cyclical with the organization’s financial
and operational business cycle. These projects occur within a planned time that suits the organization,
business units, stakeholders, and customers.
• Routine: performed as part of a regular operation rather than for a special reason or trigger; little
or no time imperative.
• Expedited: when a project targets early intervention and implementation for a condition that is not
an immediate threat to business operation.
• Urgent: project Intervention addresses acute impact on business operation and is targeted to relieve
the risk of distressed organization operation.
• Immediate: when an operation-saving project is required, and software development is performed
simultaneous with intervention. This classification of urgency normally occurs within hours of a decision
to respond to a trigger.
In today’s business environment, the trigger for a software development project can originate totally from
internal and external sources such as the COVID-19 pandemic. In these cases, urgency classification is
immediate because projects are business and operation-saving.Usingurgency classification, the urgency of

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 4 | 13

software development intervention can be defined, and urgent software development nodes can be used
by managers to:
• Manage software development projects in daily or hourly dimensions.
• Analyze software development performance (key process indicators) by checking if projects are
being completed within the appropriate time frame for its urgency classification.
• Ensure that actual application performance meets or exceeds goals.
• Verify that governance is being adhered to and that leadership is conducted “in continuous” time
units only when appropriate.
• Organize and develop the USD nodes by taking appropriate corrective actions according to urgent
classifications for development projects.
Urgent Software Development Ecosystem
As shown in Figure 1, urgent software development is a mine field of organizational and software
development concepts. There are six nodes to an urgent software development ecosystem. The ecosystem
is composed of organizationaland technical nodes and is a hybrid architecture of on and off premise
resources. Urgent software development finds a home in an ecosystem of interconnected nodes, formed by
the interaction of a community of organizational, managerial, and software development concepts.

USD Nodes
The requirements of the Urgent Software Development Ecosystem (USDE) are served by the technologies,
methodologies, processes, and practices represented by the following nodes:
• Progressive leadership
• Iterative methodology
• Tools and techniques
• Information technology services
• Test-driven environments (TDE)
• Way of working (WOW)
Progressive Leadership
At every level in the organization, managers must be “all in” when it comes to Urgent Software
Development and must establish a progressive culture within both the business and ITcommunities. This

1

Information
Technology

Services

Tools and
Practices

Test - Driven
Environments

() TDE

Progressive
Leadership

Urgent Software Development Ecosystem

Agile
Methodology

Way of
Working

) WOW (

• Concerned about
continuously adding value
than exercising formal
authority

• Common mindset geared to
results

• Willingness to take initiatives
and risks

• Fast > smaller
• DevOps/CR/CI/CD/CT/TDD
• Can enable “daily” and

possibly “hourly” change

• Multiple daily merging of
developer working copies
to a shared pipeline

• Left push (earlier) for
quality

• On demand cloud
deployment

• Information technology
governance

• Enterprise architectural
governance

• Application portfolio management
• IT investment portfolio

management

• Business functions at various
stages

• Within a domain or cross
domain (integration)

• Spin - up and tear - down
infrastructure (think cloud
deployment)

• Data slices (behavior)

Resilienc e
Agility

Innovation

• Integration, granularity,
and dynamics

• Micro services and
small chuck
development

• Paired programming

Figure 1 Urgent Software Development Ecosystem

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 5 | 13

requirement is especially true for senior leadership, as they drive the organization to think and act
differently. Management levels must embrace each of the nodes completely and leave behind traditional,
legacy ways of leading (and thinking). It takes discipline and courage to adopt USD practices since doing
so requires ending comfortable, familiar processes in favor of radically new ways of leading. Senior
leadership adapts and supports dramatically different ways of working and, at the same time, drive
radically different expectations across the organization. Management must adopt a mindset geared to
results that continuously adds value. It must foster higher risk taking and a climate of innovation and
thinking outside the box. (Goncalves, 2015)
Methodology, Tools, and Practices
Traditional software development methodologies are not conducive to “urgency.” An agile approach is a
critical success factor to establish cadence, flexibility, and response to continuously evolving requirements.
Most organizations today have adopted and are comfortable with a “reactive reliability model”, one in
which reliability is defined as a series of reactions to certain trigger events. Alerts, monitors, or system
crashes trigger reactive responses by teams of technically astute resources to uncover the source of the
issue, diagnose the underlying problem, suggest redemptive responses, and implement a recommended
response.
Urgent Software Development requires a “proactive and predictive” model to complement the reactive
nature of traditional reliability models. Continuous reliability (CR) acts as a foundation that injects quality
into the monitoring process, mitigates risk, and provides the structure necessary to respond quickly to
operational-level triggers. Continuousreliability promotes quality solutions by using traditional support
functions including problem diagnostics, efficiency tuning, real-time monitoring, and root cause analysis
by implementing reactive monitoring.
Proactive discovery creates and deploys multiple strategies and tools to gauge the health and viability of
application-based sets and functional supersets of applications. Critical application sets identified through
internal analysis (applications that have affinity with each other and function as a cohesive group) serve
as the focus for this approach, and health dashboards will indicate a relative health score for each of the
defined focus areas. The purpose of this approach is to identify issues, bottlenecks, and failure points prior
to them becoming production problems. The key tools for this practice are:
• Superset identification: All test scenarios (from traditional unit-based tests to performance tests)
are identified. The test scenarios include all the applications executed across the identified testing
scenarios (single applications, multiple applications within the same domain, multiple applications that
cross domains), the necessary supporting infrastructure that these tests require for execution, and finally,
the data that will be consumed by these tests (both positive, negative, and initial states of being).
• Reliability bots: A reliability bot is a proactive toolset created by the reliability team. Proactive,
continuous reliability models depend upon tools sets that are customized to measure, model, and alert
according to logical business scenarios that are tied to many of the superset definitions described
previously. These “bots” are proactively probing groups of applications that have an affinity with each
other and provide a grouped, logical health measurement used to monitor, diagnose, and predict the
operating metrics associated with the superset.
• Health dashboards: Health dashboards further display the health of bots, measurements, and other
diagnostic readings into “at-a-glance” decision metrics that can incorporate thresholds of acuity, trigger
response systems, and alert technical teams of both current and pending issues.

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 6 | 13

• Site reliability engineers (SRE):SRE’s are application subject matter experts that meet regularly to
gauge not only the health of their respective applications within the aggregate superset designation but
also diagnose and suggest fixes, upgrades, and architectural modifications (along with the project
reliability engineers). This process occurs on a regular cadence as opposed to ad hoc response to
immediate issues.
Continuous reliability employs a process of “predictive actions” designed to place load, stress and
controlled trauma on application sets identified as critical to the overall reliability of production
applications. Reliability teams use “rely-controlled environments “that exist behind the firewall (both
static and virtual (spin-ups)) to predict potential trouble spots and create solutions that are much more
resistant to future problems. This approach employs the following practices:
• Superset classification of high-risk, high-volume sets: The combined team of site reliability
engineers (SRE) and reliability engineers work with their development counterparts to identify “potential
and identifiable problem areas”in both application architecture and application execution. These areas
may span across domains and form their own unique focus domains, each worthy of concentrated focus.
Specific supersets that encompass these focus areas are identified and treated as an aggregate in scrutiny,
testing and measurement.
• Break connections, expectations, stability levels, pre-conceived notions: Continuous reliability
relies on the process of predictive execution in that special supersets may become candidates for reliability
targeting to push levels of expectation, performance, and legacy inertia past accepted extremes. This
practice allows technical engineers the opportunity to apply their expertise to push existing superset
aggregates past breaking points and beyond performance acceptance levels to suggest business process
and architectural modifications.
• Spin-up/spin-down environments:Test-drivenenvironmentsincorporate cloud (specifically public
cloud) infrastructure flexibility, essentially eliminating the need for continual involvement by
(development teams) in ongoing hardware, software-support and other infrastructure-related activities.
Environments are “spun-up” with each software build according to predefined environment variables and
process, and then “spun-down” again when execution concludes.
• Continuous integration threshold gates during the build process: Quality standards and thresholds
are used as a gate to “fail builds” during the CI/CT process. Sometimes, these gates are bypassed by well-
meaning professionals that are pressured to meet deadlines or other politically-based directives. The
reliability team functions as a final gateway into production for the most critical superset aggregates to
form a quality barrier against political pressures.
It is the final wall for the most critical urgent software development and may ensure that quality measures
are in place and that CI/CT thresholds are met. This practice is supported by testing toolsets, code-quality
reviews, and proactive, predictive processes.
The continuous reliability team must leverage its overall production-level system and
applicationknowledge, its breadth of system and application knowledge, and its own development skillset
to create proactive and predictive toolsets. These toolsets respond not only to existing issues but also to
proactively attacking known vulnerabilities. As a result, test scenarios are created that stress, break, and
ultimately predict system weaknesses to fortify the production baseline. Some of the tools used in this
approach include:

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 7 | 13

• AppDynamics: provides insight into application components across a cloud-based network.
AppDynamics focuses on availability and performance.(Create Your Center of Business Observability,
2021)
• Splunk: provides a repository for machine-based data. Its web-based interface can be used to
correlate, graph, and analyze data for trends, diagnostics, and mediation purposes.(Splunk Enterprise 8.2.0,
2021)
• Grafana: provides numerous visual-based data aggregations across multiple sources. This includes
charts, graphs, dashboards, and other web-based indicators.(Create Your Center of Business Observability,
2021)
Information Technology Services
Four IT services drive USD. Each of these services grease development to move at an accelerated rate. By
name, these services are not new. By operation, these services breathe life into urgency.
Information Technology Governance
IT governance is a long-standing service for providing a structure for aligning IT strategy with business
strategy. It considers business unit, stakeholder, and employee interest to work toward the organization’s
goals and processes to be followed.(Lindros, 2017)In USD, governance embraces a dynamic priority
process. Decisions are made in tight timing windows to respond to triggers. Based upon a daily or hourly
triage, IT governance sets the priority of work to be completed and which applications will be deployed.
Enterprise Architectural Governance
Enterprise architectural governance (EAG) involves review, standards, and roadmap processes to generate
policies, processes, procedures, and standards for the enterprise architecture. The timing windows of USD
erode architecture. Continuous development can result in large or incremental changes to enterprise
architecture. Enterprise architectural governance functions as oversight to the lighting fast software
development initiatives. To govern USD effectively, the three components of EAG are enhanced :(Enterprise
Architecture Governance, 2021)
• Architecture review process: This process is no longer periodic. It is operationally focused with the
objective of ensuring conformance to strategy and standards. Reviews are exception-based triggers only
with an issue classified with “high” enterprise impacts.
• Standards management process: In USD, the standards management process establishes change
control priority over architecture standards. It requires that change control independent of a traditional
change control board. Greater change control authority is delegated to the project team.
• Roadmap management process: A final component of effective USD EA governance is managing
change against the enterprise roadmap. The roadmap provides lower volatility and more stability resulting
from continuous time periods. Tolerances are established for acceptable and unacceptable architectural
deviations.
Application Portfolio Management
Urgent software development targets important applications within the application inventory. How does
USD know what applications are important? The application portfolio includes attributes for referencing
“importance”. Applications are classified as mission critical, mission essential, and mission foundational.
Other attributes detail interaction between and among applications.
Who calls whom? What data is public, passed, and private? With these attributes, USD identifies which
projects contain or interact with high-priority, high-risk applications.(The Definitive Framework for
Application

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 8 | 13

Rationalization, 2021)
IT Investment Portfolio Management
The resources allocated to software development are identified, approved, and encumbered in the
organization’s IT investment portfolio. Investment portfolio management utilizes diversification to reduce
risk.Diversification across different software development projects with urgency classes of have risk
return characteristics. Portfolio management evolves from a cyclical-based portfolio to an event-based
portfolio reviewed and evaluated continuously throughout a fiscal cycle.(Ragin & Garibaldi, 2021)
Test-Driven Environments
A test-driven environmentprovides the testing approach needed in Urgent Software Development. TDE
uses the concept of“supersets.” A superset is multiple predefined test sets that consist of the following
components:
1. Testing within and across domains based upon critical business operational scenarios.
2. Identifying and defining the applicable applications within each of the supersets.
3. Mapping and planning the necessary infrastructure to support each superset test.
4. Defining and creating “data slices” that correspond each business scenario.Data slices are spun up
when the infrastructure is spun up and can be accessed as relevant data on demand.
Way of Working
Way of working is how all the ecosystem nodes operate in an integrated, unified manner. Leadership, agile
methodology, tools and practices, IT services, and TDE collectively performance as an operating organism,
mutually interdependent parts functioning together. USD evolves and changes its composition. WOW
operates as the “glue” that ties the other ecosystem nodes together into a cohesive, evolving environment.
Way of Working not only captures and defines the operating nature of each individual ecosystem node but
also acts as a diagnostic response mechanism and proactive instigator for favorable change across the
entire IT organization. The WOW node accepts input (both favorable and unfavorable) from each USDE
node, analyzes the input from the focus point of the whole, and instigates and promotes modifications
across the entire domain of ecosystems as necessary.
WOW is ever evolving, always probing, and continually updating its “Way of Working” definition. This
process effectively drives the operating blueprint for what is current and for what is future state. It acts as
the control mechanism for all the USDE nodes as they operate in cooperation with each other as well as an
accelerator to embrace necessary change. A healthy WOW node lowers the barriers that exist among USDE
nodes and acts the arbiter to ensure a smooth catalyst for change. Finally, the WOW node provides both
valuable feedback and future state opportunities to the leadership node to help maintain a vibrant IT
evolutionary process.
WOW requires managed granularity in the context of today’s large software solutions. It relies upon
generating and maintaining small chunks of code. To response urgently to a trigger, more granular code is
utilized. Software engineers use a microservice architecture reference model to understand the breadth
and depth of code chunk operation and logic. These small chunks of code are designed with strong
encapsulation and separation of concerns, are largely independent of other code, and generally stand alone
in both application testing and functional execution. Code issues are logically isolated to the code’s
microservice. In general, this isolation allows the overall application to operate while the microservice is
altered. Monolithic code-based architecture, by contrast, are often affected by functional code problems
and are either up or down based on its weakest link.

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 9 | 13

When generating code, thresholds are set high to ensure that all urgent software deployment progresses
through a series of high quality assurance processes at both the unit and integration levels. Code is
controlled within a code repository (such as Gitlab)(DevOps Platform, 2021), moved within a pipeline
structure (such as Jenkins) (Pipeline, 2021), and iteratively driven through quality tools (including
Junit(Why Use JUnit for Testing?, 2021)), Jacoco(Jacoco (Java Code Coverage) - Tutorial, 2021)), SonarQube
(SonarQube 8.8, 2021) and Fortif(Micro Focus Fortify Software v20.2.0, 2020). In addition, more advanced
testing should be embedded that goes beyond a unitfocus and more toward integration and end-to-end
(E2E) (using scripts created in toolsets like Cucumber).
 (Tools & Techniques that Elevate Teams to Greatness, 2021)This coding practice proves its worth by
having two programmers involved with writing and testing code and reviewing it for functionality and
quality at the same time. In USD, combining these efforts into the initial code building process serves to
ensure both functional understanding and high-quality builds since the process does not rely on a single
perspective. Each participant can then take their combined knowledge to other pairs providing for a
broader understanding of functioning code.
Architecting an Urgent Software Development Maturity Model
The Urgent Software Development maturity model depicts a succession of changes related to how software
development is managed and conducted. As shown in Figure 2, maturity is defined as the organization-
wide ability for managing software development and maintenance processes. With a mature USDE, a
disciplined evolution is consistently followed as an organization moves to be an urgent-enabled status:
• Level 1 Initial: no or missing ecosystem nodes; software development is conducted at the local level
without organizational coordination.
• Level 2 Established: ecosystem nodes are implemented; software development is conducted at the
organizational level with aggregate planning processes; the planning period is cyclical based on annual or
quarterly cycles.
• Level 3 Integrated: ecosystem nodes work together; drive each other and respond to the outcomes
of each other’s contributions; software development shifts from cyclical-based planning to embrace event-
based triggers.
• Level 4 Monitored: ecosystem nodes operation is measure for efficiency and effectiveness; urgency
is identified at an operational level which could be with a business unit or set of business units; software
development shifts away from cyclical-based planning to event-based triggers; traditional cyclical-based
planning embraces temporal events to accommodate traditional cycle-based projects.
• Level 5 Optimized: ecosystem nodes operate in an urgent state in which projects are initiated in
near a real-time dimension; urgency expands to be a business-critical level with a going concern impact;
software development feeds from a continuous pipeline of software development from which deployment
can be obtained for a “ready” version of production software “awaiting” a trigger to active it.
As shown in Figure 2 to realize USD, an organization moves through five levels of maturity. The maturity
model has a time dimension on the x-axis and the ecosystem on the y axis. Time is on the x axis because
USD organizations evolve from a cyclical to continuous definition of time. At the initial level as software
development is conducted, month-to-month or week-to-week time dimensions are used to organize
software development work efforts. At the initial level, time dimensions are abstracted for individual
projects. At the established level, the time dimensions are extrapolated from aggregate planning for a
portfolio of projects. This extrapolation is predictive in nature because the organizations seek to manage
aggregate supply and demand of resources. At the integrated level, a shift occurs in the time dimension.

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 10 | 13

Time embraces the unpredictable, unanticipated triggers that “force” a solution. At the monitored level, the
concept of predictability diminishes. Plan-based project become temporal event-based projects that can
drives plans. Finally, at the optimized level, the time variable changes. Rather than being driven by triggers,
software development proceeds continuously with the possibility of small chunk modifications as a viable
production response to the trigger. In theory, the deployment is real-time with the trigger, even though in
practice the time interval for production deployment could be a short one. To achieve urgency, an
organization evolves from operating using a discrete time interval to a continuous time measure.

Along the y-axis, the implementation of the ecosystem nodes is represented. In a perfect world, the
limitations and constraints of ecosystem nodes would not exist. For example, an organization would have
no traditional software development. An organization would operate full blown DevOps with CR, CI, CT,
and TDD. At level one in the USD maturity model, an organization has not implemented the ecosystem
nodes. The management and leadership style might not be progressive, or the IT investment portfolio is
filled with traditional software development projects and no urgency classification is utilized. As an
organization matures to the integrated level, the ecosystem nodes interact and affect the performance of
one another. At this level, the application portfolio management and IT investment portfolio management
processes interact with the methodology element. For example, not all the installed base and software
development projects can be urgent and conducted iteratively. Installed applications and software
development projects can be classified as mission critical, mission essential, or mission foundational to
establish priorities with the portfolios. The governance process can be refined for oversight of these higher
priority software resources. At the integrated level, event-driven development is legitimate, and urgency
is formally a part of software development and solution delivery.
Once urgency is formally accepted, the time dimension grows more important. At the monitored and
optimized levels, the time dimension for urgent software development shifts from cyclical to continuous.

1

Urgent Software Development Maturity
Model

Initial

Established

Integrated

Monitored

Optimized

Cyclical
(extended or longer time
duration)

Continuous
no or little cyclical time) (

How a business manages time
and how projects respond to it

Unreceptive

Aggressive

How a
business

adopts the
ecosystem

components in
the face of
uncertainty

Plan - based

Plan - based and
event based

Event - based

Continuous
pipeline

• No or missing
ecosystem
components
• Ad hoc

) individual projects (

• Implemented
ecosystem
components
• Scheduled
(project portfolio)

• Unified ecosystem
components
• Composite
(project portfolio
classification)

• Monitored
ecosystem
components
• Adaptive

operational (
essential imperative)

• Realized urgent
ecosystem
• Urgent
(business critical
imperative)

Unplanned

Figure 2 Urgent Software Development Maturity Model

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 11 | 13

To response in urgent situations, an organization focuses on an operational imperative in the
organization’s business model. The goal is not to implement a solution on time. Rather the goal is to
implement a solution that solves a critical operation imperative. The impact of the degradation or failure
of this operation is mission critical to the company. To determine if USD is being delivered in an urgent
manner, measurements are taken. Both qualitative and quantitative criteria are applied to measure USD
performance. One qualitative criterion is timeliness, which is the ability to meet deadlines. Another
qualitative time-related criterion is delays, which are arbitrarily long solution deliveries. A third USD
performance criteria is quantified.Worst-case delivery times to occurring event and triggers provides
measurements for development urgency. Utilizing a total cost of ownership (TCO) discipline, overall
project costs (the bottom-line) yield the fiscal measurement of software development in an urgent state.
At the optimized level, the USDEoperates as a wholly integrated ecosystem. The organization’s urgent
software development responds readily to events and triggers in a situational, continuous time context.
Solution deployment is completed within targeted days or hours of an overall business critical imperative
requirement.
Summary
USD is an innovation that goes beyond hype. “A hype cycle is a graphical representation model produced
by Gartner Inc. that helps organizations understand the maturity and adoption of new and emerging
technologies and how they can be used to address and solve real business problems.”(What Does Hype
Cycle Mean?, 2021)Gartner’s Hype Cycle is a graphical depiction of a common pattern that arises with each
new technology or other innovation.(Hype Cycle, 2021)USD is a cultural, managerial, technical,
methodology, tools, and practice architecture for software development in a continuous time dimension. It
is not proposed that the USDE outlined in this paper is the “optimum” one. Rather, it is proposed that the
presented ecosystem is the initial foundation for moving USD to the forefront of organization’s vision if it
seeks to operate more efficiently and effectively in today’s trigger-driven, continuous time environment.
The most fundamental USD requirement is the ability of the ecosystem to respond to external events with
very short, deterministic delays. USD usually runs with critical deadlines. Therefore, an ecosystem must
have a fully deployed and integrated set of nodes operating in a continuous time scale. The explicit
involvement of the dimension time distinguishes USD from other forms of software development. This is
expressed by the following two software development requirements, which USD must fulfil even under
extreme time pressures: timeliness and near simultaneity of trigger and deployment behavior. These
requirements are supplemented by two additional ones of equal importance: predictability and
dependability. When triggered by external events, development, quality assurance, and deployment must
be performed on time. The mere solution response speed is not decisive, but the timeliness of reactions
within predefined and predictable time bounds is vital. Hence, it is characteristic of USD that its functional
correctness does not only depend upon the processing results, but also upon the instants, when these
results become available. Correct solutions are determined by the ecosystem, which yield to a quality
solution from a development pipeline in contrast to published traditional and agile methodologies.
Bibliography

Create Your Center of Business Observability. (2021). Retrieved from AppDynamics:
https://www.appdynamics.com/product. Accessed on 10 August 2022.

DevOps Platform. (2021). Retrieved from GitLab: https://about.gitlab.com/. Accessed on 10 August 2022.

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 12 | 13

Enterprise Architecture Governance. (2021, February 6). Retrieved from CIOIndex:
https://ciowiki.org/wiki/Enterprise_Architecture_Governance. Accessed on 10 August 2022.

Goncalves, M. (2015, January 6). Progressive Leadership Begins with a Progressive Leader. Retrieved from
Linkin: https://www.linkedin.com/pulse/progressive-leadership-begins-leader-marcus-
goncalves-ed-d-/. Accessed on 4 September 2022.

Hype Cycle. (2021). Retrieved from Gartner: https://www.gartner.com/en/information-
technology/glossary/hypecycle. Accessed on 4 September 2022.

Jacoco (Java Code Coverage) - Tutorial. (2021). Retrieved from Vogella:
https://www.vogella.com/tutorials/Jacoco/article.html. Accessed on 4 September 2022.

Lindros, K. (2017, July 31). What is IT governance? A formal way to align IT & business strategy. Retrieved
from CIO: https://www.cio.com/article/2438931/governanceit-governance-definition-and-
solutions.html. Accessed on 4 September 2022.

Micro Focus Fortify Software v20.2.0. (2020). Retrieved from Micro Focus:
https://www.microfocus.com/documentation/fortify-software-
securitycenter/2020/FortifySW__RN_20.2.0/FortifySW__RN_20.2.0.htm. Accessed on 4 September
2022.

Operation Warp Speed. (2021, February 11). Retrieved from GAO@100. Accessed on 4 September 2022.

Pipeline. (2021). Retrieved from Jenkins: https://www.jenkins.io/doc/book/pipeline/. Accessed on 10
June 2022.

Ragin, M., & Garibaldi, C. (2021). Project Portfolio Management Services. Retrieved from Deloitte:
https://www2.deloitte.com/us/en/pages/consulting/articles/project-portfolio-management-

services.html?id=us:2ps:3bi:consem21:eng:cons:60520:nonem:na:OXe97WtG:1191982706:7675979450
3399:b e:Business_Tech_Transformation:Portfolio_Management_Services_Exact:nb. Accessed on 4
September 2022.

SonarQube 8.8. (2021). Retrieved from SonarQube: https://www.sonarqube.org/sonarqube-
88/?utm_source=bing&utm_medium=paid&utm_campaign=sonarqube&utm_content=sonarqube.
Accessed on 4 September 2022.

Splunk Enterprise 8.2.0. (2021). Retrieved from Splunk:
https://www.splunk.com/en_us/download/splunkenterprise.html?utm_campaign=bing_amer_e
n_search_brand&utm_source=bing&utm_medium=cpc&utm_
term=splunk&utm_content=Splunk_Enterprise_Demo&_bt=71811971151777&msclkid=3f857e3
7007116e 594871e8173950ffd. Accessed on 16 June 2022.

https://ethanpub.online/Journals/index.php/E16

Computer Engineering and Intelligent System Journal
ISSN: 2997-6812 |
Volume 10 Issue 4, October-December, 2022
Journal Homepage: https://ethanpub.online/Journals/index.php/E16

Official Journal of Ethan Publication

Computer Engineering and Intelligent System Journal

P a g e 13 | 13

The Definitive Framework for Application Rationalization. (2021). Retrieved from Apptio:
https://www.apptio.com/resources/ebooks/definitive-framework-
applicationrationalization/?utm_source=bing&utm_campaign=core-dbv_ams-multi-
en_apprat&utm_medium=cpc&utm_term=application%20portfolio%20management&utm_source
=bing&utm_me dium=cpc&utm_term=appli. Accessed on 4 September 2022.

Tools & Techniques that Elevate Teams to Greatness. (2021). Retrieved from Cucumber:
https://cucumber.io/. Accessed pn 16 June 2022.

What Does Hype Cycle Mean? (2021). Retrieved from Techopedia:
https://www.techopedia.com/definition/29298/hype-cycle. Accessed on 4 September 2022.

Why Use JUnit for Testing? (2021). Retrieved from stackoverflow:
https://stackoverflow.com/questions/10858990/why-use-junit-for-testing. Accessed on 4
September 2022.

Your Observability Wherever You Need It. (2021). Retrieved from Grafana Labs: https://grafana.com/.
Accessed on 16 June 2022.

https://ethanpub.online/Journals/index.php/E16

