Volume 1 Issue 1 February 2024 ISSN: Pending... # EXPLORING TILTED COSMOLOGICAL SCENARIOS: BIANCHI TYPE I MODELS WITH PERFECT FLUID IN GENERAL RELATIVITY ### Rajesh K. Sharma and Anjali M. Gupta Department of Mathematics, Seedling Academy, Jaipur National University, India **Abstract:** The exploration of spatially homogeneous and anisotropic universes, particularly those exhibiting tilt, has garnered significant interest in recent years. Tilted universes, where matter does not move orthogonally to the hypersurface of homogeneity, offer a nuanced understanding of cosmic dynamics. Early seminal works by King and Ellis (1973), Ellis and King (1974), and Collins and Ellis (1979) extensively examined the general dynamics of tilted universes. Dunn and Tupper (1978) and Lorenz (1981) specifically delved into Tilted Bianchi Type I models, while Mukherjee (1983) investigated these universes with heat flux, revealing intriguing pancake-shaped configurations. Bradley (1988) contributed by deriving tilted spherically symmetric self-similar dust models, adding to the complexity of equations governing tilted cosmological scenarios. The mathematical formalism governing tilted cosmological models is notably intricate compared to non-tilted ones, as highlighted by Ellis and Baldwin (1984), who proposed the potential presence of tilt in our universe and suggested detection methods? Further advancements include the exploration of tilted cold dark matter cosmological scenarios by Cen et al. (1992), shedding light on the implications of tilt in cosmological dynamics. Additionally, Bali and Sharma (2002) delved into the characteristics of tilted Bianchi Type I dust fluid, revealing peculiar cigar-type singularities under certain conditions. This abstract encapsulates the evolving landscape of tilted universes, emphasizing the significance of tilt in shaping cosmic evolution and structure. Through a historical overview and examination of key findings, it underscores the importance of understanding tilted cosmological models in elucidating fundamental aspects of the universe's evolution and structure. Keywords: Tilted universes, cosmological dynamics, Bianchi Type I models, cosmic evolution, cosmic structure #### INTRODUCTION In recent years, there has been a considerable interest in investigating spatially homogeneous and anisotropic universe in which the matter does not move orthogonally to the hypersurface of homogeneity. These are called tilted universe. The general dynamics of tilted universe have been studied in detail by King and Ellis (1973), Ellis and King (1974), and Collins and Ellis (1979). Tilted Bianchi Type I models have been obtained by Dunn and Tupper (1978) and Lorenz (1981). Mukherjee (1983) has investigated tilted Bianchi Type I universe with heat flux in general relativity. He has shown that the universe assumes a pancake shape. Bradley (1988) obtained all tilted spherically symmetric self-similar dust models. The equations for tilted cosmological models are more complicated than those of non-tilted ones. Ellis and Baldwin (1984) have shown that we are likely to be living in a tilted universe and they have indicated how we may detect it. A tilted cold dark matter cosmological scenario has been discussed by Cen et al. (1992). Bali and Sharma (2002) investigated tilted Bianchi Type I dust fluid and shown that model has cigar type singularity when T = 0. In this paper, we have investigated tilted Bianchi Type I dust fluid of perfect fluid in general relativity. To get a determinate solution, a supplementary condition P = 0, $A = (BC)^n$ between metric potential is used. The behavior of the singularity in the model with other physical and geometrical aspects of the models is also discussed. #### THE METRIC AND FIELD EQUATIONS We consider metric in the form: $$ds^2 = \Box dt^2 + A^2 dx^2 + B^2 dy^2 + C^2 dz^2$$, (1) Where A, B and C are functions of 't' alone. # Computer Engineering and Intelligent System Journal Volume 1 Issue 1 February 2024 ISSN: Pending... | The energy-momentum tensinto the form:
$Ti^{j} \square (\square \square p) viv^{j} \square pgi^{j} \square qiv^{j}$
Together with | <u>-</u> | stribution with heat con | nduction given by Ellis | s (1971) is taken | |---|---|-----------------------------------|---------------------------------|-------------------| | $g_{ij} v_i v^j = -1 ,$ | (3) | | | | | $qiq^{j} > 0$, | (4) 2 | | | | | $qiv^i = 0$, | | (5) | | | | Where p is the pressure, \Box has the components \Box \Box A 3 and \Box is the tilt angle. | | | orthogonal to v^{i} . The f | fluid flow vector | | The Einstein field equation AB44 \pm AC4 $+$ E ($\Box \Box p$) Asinh \Box cosh $\Box \Box q_1 c$ Where the suffix '4' stands | for ordinary differentia | $\square 0$, (11) $\cosh\square$ | | | | Equations 7 to 11 are five complete solution we requir 1) We assume that the mode $p = 0$ 2) Relation between metric potentials. | equations in seven unge two more conditions: el is filled with dust of (12) | : | | to determine the | | $A = (BC)^n$
Where n is constant.
Equations 7 and 10 lead to | (13) | | | | | B44 C44 2B4C4 □ A4C4 □ A4I | 34 □ 8□ (□□p) □ (14) | | | | | Rij □1Rgij □□8□Tij, (unit 2 For the line, element of Eq | | (6) | | | | B44 + C44 + B4C4 = $\square 8 \pi$
B C BC \square
sinh \square , (7) | $\Box\Box(\Box\Box p)\sinh2\Box\Box p$ | □2q1 | | | | A \square \square
A44 +C44 +A4C4 = \square 8 π p,
A C AC | | | | | | $A44 + B44 + A4B4 = \square 8\pi p$,
A B AB | | | | | Volume 1 Issue 1 February 2024 ISSN: Pending... The density for the model of Equation 25 is given by: # Computer Engineering and Intelligent System Journal Volume 1 Issue 1 February 2024 ISSN: Pending... | 8 π = (4n □ 1) | b $(27) 2(2n \square 1) T$ | $\frac{4n^2+2n+1}{2n+1}$ | | | | |---|---|--|--|--|--| | The tilt angle \square is given by: | · / · / / | | | | | | $\cosh \lambda = 1$ $2n \square 1$ | (28) | | | | | | | | | | | | | $ sinh\lambda = 1 1 2n \\ 2\sqrt{n} $ | (29) | | | | | | $2\sqrt{n}$ | (22) | | | | | | The reality conditions | | | | | | | (i) $\Box + p > 0$, | | | | | | | | | | | | | | (ii) $\square + 3p > 0$, lead to
$\qquad \qquad $ | H) □0 (20) | | | | | | | $\square 0 \tag{30}$ | | | | | | $2(2n\square 1)$ | | | | | | | Where | | | | | | | $b(4n\Box 1)$ | | | | | | | | | | | | | | $2(2n\square 1)$ | | | | | | | The scalar of expansion \square ca | Iculated for the flow vector \Box^i is given by: | | | | | | | 4 510 51 | | | | | | $(\underline{n} \square \underline{1}) (2\underline{n} \square \underline{1}) \square \underline{a}^2 \square \underline{b} (4\underline{n} \square \underline{1}) \square$ | $\frac{4n-1/2n-1}{2n-1}$ \square (31) | | | | | | $\square \square n \square 1 $ \bigvee $(4n \square 1)Tn \square 1$ | | | | | | | 2T | | | | | | | The components of fluid flow | v vector vi and heat Bagora and Bagora 3 ce | onduction vector q ¹ for the model of | | | | | Equation 25 are given by: | | | | | | | | | | | | | | $\Box^1 \Box \frac{1}{2T^n} \sqrt{\frac{1}{\square} \frac{2n}{n}}$ | (32) | | | | | | $^{\square} ^{\square} 2T^{n} \bigvee n$ | | | | | | | | | | | | | | $\Box^4 \Box \frac{1}{2} \sqrt{\frac{2n}{\Box 1}}$ | (33) | | | | | | $\square \square_2 \sqrt{n}$ | (66) | | | | | | | | | | | | | $a^1 = \prod (4n \prod 1)b = \sqrt{1 \prod 2n}$ | | | | | | | $q^{1} = \frac{\prod (4n \prod 1)b}{64 \prod \frac{6n^{2} \prod 3n \prod 1}{2n \prod 1}} \sqrt{\frac{1 \prod 2n}{n}}$ | (34) | | | | | | | | | | | | | ${ 4 \ (4\underline{n} \square 1)(1 \square 2\underline{n})\underline{b} \ 1 \over n} \underline{\square} \underline{2\underline{n} (35)} \\ n$ | 4 🗆 🗆 | | | | | | $64\square(2n\square 1)T$ | | | | | | | , | ate of chear tensor $(\square \cdot \cdot)$ and rotation tensor $(\square \cdot \cdot)$ |) are given by | | | | | The non-vanishing components of shear tensor (\Box_{ij}) and rotation tensor (\Box_{ij}) are given by $(4n^2 \Box 1) (2n \Box 1) \Box a^2 \Box b (4n \Box 1) T^{4n \Box 1/2n \Box 1} \Box$ (36) | | | | | | | $\square 11 \square 24nT1 \square n$ $\underline{n(4r)}$ | * * * | | | | | | |) $\Box (1\Box 2n) \Box a2 \ \Box b(4n\Box 1)T4n\Box 1/2n\Box 1\Box \Box 3$ | o 4n□1□ | | | | | * |) $\Box(1\Box 2\Pi) \Box az \Box b(4\Pi\Box 1)14\Pi\Box 1/2\Pi\Box 1\Box \Box 3$ | a 411∟1 ∟ | | | | | (37) | | | | | | | □22 □ 121Tn ~((24~~□□11) | | 20.40.010.0 | | | | | |) $\Box (1\Box 2n) \Box a2 \ \Box b(4n\Box 1)T4n\Box 1/2n\Box 1\Box \Box 3$ | oa 4n ⊔1⊔ ⊔ | | | | | (38) | (1 - 2) = 2 - 1 (41) - 4n - 1/2n - 1 = (20) | | | | | | | $(1\square 2n)\square a^2\square b(4n\square 1)T^{4n\square 1/2n\square 1}\square (39)$ | | | | | | $\square \square \square 24n $ | (1 - 0) - 2 - 1 (4 1) - 4 n - 1 / 2 n - 1 / 2 | | | | | | $\sqcup (26n^2 \sqcup 3n \sqcup 2)$ | $(1\square 2n)\square a^2\square b(4n\square 1)T^{4n\square 1/2n\square 1}$ | | | | | | | | | | | | Volume 1 Issue 1 February 2024 ISSN: Pending... $\Box 14 \Box \Box$ 24nT n (40) $\omega_{14} = (6n \square 1) (1 \square 2n) \square a^2 \square b(4n \square 1) T^{4n \square 1/2n \square 1} \square (41)$ 16T $n(4n\square 1)$ The rates of expansion H_i in the direction of x, y and z axes are given by $H_1 \underset{\square}{\square} \frac{n}{T^{8n^2\square^4n\square^{1/2}(2n\square^1)}} \sqrt{\frac{a^2T^{4n^2\square^2n\square^{1/(4n}\square^1)} \underset{\square}{\square} b(4n\square^1)T^{2n}}{4n\square^1}}$ $H_2 \stackrel{1}{\Box_{2T^{\$ n^2}\Box^{4n}\Box^{l/2}(2n_\Box)}} \sqrt{\frac{a^2T^{4n^2}\Box^{2n}\Box^{l/(4n_\Box)l}}{4n_\Box 1}} \stackrel{1}{\Box_{2T^{n_\Box l}}} \frac{a}{\Box_{2T^{n_\Box l}}}$ (43) $H_3 \; \underset{2T^{8n^2} \square^{4n} \square^{1/2(2n} \square^1)}{1} \; \sqrt{\frac{a^2 T^{4n^2} \square^{2n} \square^{1/(4n} \square^1) \; \; _{\square} b(4n \; _{\square} 1) T^{2n}}{4n \; _{\square} 1}} \; \frac{a}{\square_{2T^n \square^1}}$ (44) #### DISCUSSION The model started with a big-bang at T = 0 and the expansion in the model decrease as time T increases and it stopped at $T = \square$. The model has point type singularity at T = 0 (MacCallum, 1971). The model represents shearing and rotating universe in general and rotation goes on decrease as time increases. Since $\lim_{n \to \infty} |0\rangle$, then the model does not approach isotropy $T \square \square \square$ for large value of T. Density \square \square 0 as T \square \square and \square \square as T \square 0. When T \square 0. q^1 \square and q^4 \square \square . Also, q^1 and q^4 tend to zero as T \Box 0. At T = 0, the Hubble parameters tend to infinite at the time of initial singularity of vanish as T \Box \Box . #### REFERENCES Bali R, Sharma K (2002). Tilted Bianchi Type I dust fluid cosmological model in general relativity. Pramana J. Phys. 58(3):457-463. Bradley M (1988). Dust EPL cosmologies. Class. Quant. Grav. 5:L15. Cen R, Gnedin NY, Kofman LA, Ostriker JP (1992). A tilted cold dark matter cosmological scenario. Astrophys. J. Part 2-Lett. 399(1):L11L14. Collins CB, Ellis GFR (1979). Singularities in Bianchi cosmologies. Phys. Rep. 56:65-105. Dunn KA, Tupper BOJ (1978). Tilting and viscous models in a class of Type VI/0/ cosmologies. Astrophy. J. Part-1 222:405-411. Ellis GFR (1971). In General Relativity and Cosmology, ed. R.K. Sachs, Academic Press, New York. P. 116. Ellis GFR, Baldwin JE (1984). On the expected anisotropy of radio source counts. Mon. Not. Roy. Astro. Soc. 206:377-381. Ellis GFR, King AR (1973). Tilted homogeneous cosmological models. Comm. Math. Phys. 31(3):209-242. King AR, Ellis GFR (1974). Was the big bang a whimper?. Comm. Math. Phys. 38(2):119-156. Volume 1 Issue 1 February 2024 ISSN: Pending... Lorenz D (1981). Tilted electromagnetic Bianchi Type I and Type II cosmologies. Phys. Lett. A 83(4):155-157. MacCallum MAH (1971). A class of homogeneous cosmolog- ical models III: asymptotic behavior. Comm. Maths. Phys. 20(1):57-84. Mukherjee G (1983). A Bianchi Type I tilted universe. J. Astrophys Astron. 4:295-300.