Entrepreneurship, Business and Economics Research Journal

ISSN: 2997-6782 |

Volume 11 Issue 1, January-March, 2023

Journal Homepage: https://ethanpub.online/Journals/index.php/E14

Official Journal of Ethan Publication

DECIPHERING THE FORMULA: SIMPLIFYING THE UNDERSTANDING OF HOLDING PERIOD RETURNS

Emily Anne Roberts

Department of Economics and Information Systems, Stanford University, Palo Alto, CA, USA

Abstract:

The concept of holding period return (R) is a fundamental measure in finance, representing the ratio of future proceeds to the initial investment. For bonds, this calculation is defined as R = (B1 - B0 + iF)/B0, where Bt denotes the bond valuations at time t, iF represents interest payments at the interest rate i on face value F, and M signifies maturity, discounted at rate k, known as the yield to maturity. Corporate bonds often entail semi-annual interest payments, equivalent to half the annual iF amount. These interest payments can be conceptualized as an annuity, iF/k(1-1/[1+k]M), while the face value is F/(1+k)M. This abstract delves into the mathematical intricacies of holding period returns for bonds and provides insights into their underlying principles.

Keywords: Holding Period Return, Bond Valuation, Yield to Maturity, Corporate Bonds, Interest Payments

Introduction

A holding period return R is a ratio of future proceeds divided by its initial investment. For a bond it is $R = (B_1 - B_0 + iF)/B_0$ with bond valuations B_t at time t with interest payments of iF at interest rate i on face value F, and with a maturity M discounted at rate k which for bonds is called the yield to maturity. Interest payments on corporate bonds are often paid twice a year as half the annual amount of iF. The interest payments are an annuity as $iF/k(1-1/[1+k]^M)$ and the face value is $F/(1+k)^M$ or:

 $B_0 = iF/k(1-1/[1+k]^M) + F/(1+k)^M$ and $B_1 = iF/k(1-1/[1+k]^{M-1}) + F/(1+k)^{M-1}$. Thus:

 $R = \{iF/k(1-1/[1+k]^{M-1}) + F/(1+k)^{M-1} - iF/k(1-1/[1+k]^{M}) - F/(1+k)^{M} + iF\}/\{iF/k(1-1/[1+k]^{M}) + F/(1+k)^{M}\},$ canceling F:

 $R = \{i/k(1-1/[1+k]^{M-1})+1/(1+k)^{M-1}-i/k(1-1/[1+k]^{M})-1/(1+k)^{M}$

+i}/ ${i/k(1-1/[1+k]^M)+1/(1+k)^M}$, expanding the annuities:

 $R = \{i/k - [i/k]/[1+k]^{M-1} + 1/(1+k)^{M-1} - i/k + [i/k]/[1+k]^{M} - 1/(1+k)^{M} + i\}/ \{i/k - [i/k]/[1+k]^{M} + 1/(1+k)^{M}\},$ canceling like terms:

 $R = \{-[i/k]/[1+k]^{M-1}+1/(1+k)^{M-1}+[i/k]/[1+k]^{M}-1/(1+k)^{M}+i\}/(1+k)^{M}+i$ /(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i}/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i/(1+k)^{M}+i

 $\{i/k - [i/k]/[1+k]^M + 1/(1+k)^M\}$, multiplying by $(1+k)^M$:

 $R = [-i(1+k)/k + (1+k) + i/k - 1 + i(1+k)^{M}]/[i(1+k)^{M}/k - i/k + 1], \text{ and multiplying by } k:$

 $R = [-i(1+k)+(1+k)k+i-k+ik(1+k)^{M}]/[i(1+k)^{M}-i+k]$, and expanding:

 $R = [-i - ik + k + kk + i - k + ik(1 + k)^M]/[i(1 + k)^M - i + k], \text{ and canceling:}$

 $R = [-ik + kk + ik(1+k)^{M}]/[i(1+k)^{M} - i+k].$

The numerator is a multiple of the denominator by k, therefore R = k.

Here are some different examples of holding period returns for various bonds discounted at a 10 percent yield: Coupon

Interest Maturity Price Maturity Price Yield

Entrepreneurship, Business and Economics Research Journal

Entrepreneurship, Business and Economics Research Journal

ISSN: 2997-6782 |

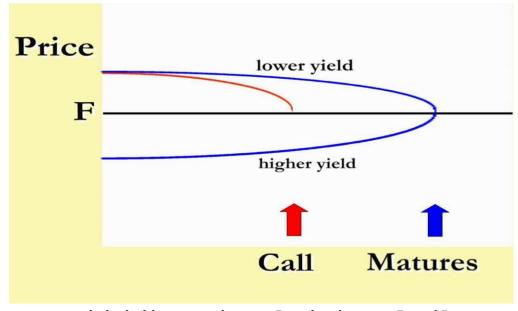
Volume 11 Issue 1, January-March, 2023

Journal Homepage: https://ethanpub.online/Journals/index.php/E14

Official Journal of Ethan Publication

0	2	86.6	54 1	90.9	91 10)				
1	3	77.6	52 2	84.3	38 10					
5		30	52.87	29	53.15	10				
10		20	100.00	19	100.00	10				
12		5	107.58	4	106.34	10 15	20	142.56	19	141.82
10										

Do be wary of bonds trading at a premium and/or convertible bonds. For bonds trading at a premium, yield to call price and call date would be more appropriate.



For a common stock the holding period return R with valuations P_t and D_t at time t, the yearly return would be $R = (P_1 - P_0 + D_1)/P_0$. Often dividends are paid four times a year with an associated decrease in value on its exdividend date; exchange traded funds often pay monthly. A common stock with a dividend payment of D_t and discounted at rate k with growth rate g, is valued as:

 $P_0 = D_1/(k-g) = D_0(1+g)/(k-g);$

Substituting: $R = (D_1[1+g]/[k-g] - D_1/[k-g] + D_1)/(D_1/[k-g])$, Canceling D₁:

R = ([1+g]/[k-g] - 1/[k-g] + 1)/(1/[k-g]), Multiplying by (k-g): R = (1+g-1+k-g) Which results in R = k.

Here are some examples of different common stocks with different dividends and different growth rates discounted at a 10 percent discount rate:

Growth	Current	Curre	nt Next		Next		
Rate	Dividend	Price	Dividend	Price	Yield		
0 2.00	0	20.00	2.00		20.00	10	
4 1.	00 17.33	1.04		18.03	10		
6 4.0	00 106.00	4.24 112.30	5 10	;	8 1.00	54.00 1.08	58.32 10

Do be wary that tax considerations were neutral here whereas in reality capital gains tax rates and the tax rates upon dividends may differ.

Entrepreneurship, Business and Economics Research Journal

ISSN: 2997-6782 |

Volume 11 Issue 1, January-March, 2023

Journal Homepage: https://ethanpub.online/Journals/index.php/E14

Official Journal of Ethan Publication

Note that $D_1 = E_1$ (1-b) where E is a firm's earnings, b is the firm's retention rate, and a firm's endogenous growth rate g may be determined by g = br where r is the firm's rate of return. Earnings are achieved on the firm's assets A or $E_1 = A_0 r$.

Thus:

 $P_0 = D_1/(k-g) = E_1(1-b)/(k-g) = A_0r(1-b)/(k-br).$

Likewise $k = D_1/P+g = E_1(1-b)/P+br = A_0r(1-b)/P+br$. Where r is greater (less) than k, P will be valued greater (less) than A. However, when r is greater than k, a lesser dividend and a greater retention rate resulting in increased growth will increase valuations, whereas when r is less than k then a greater dividend and lesser retention and lower growth rates will increase valuations albeit still below asset valuation A. Consider A_0 equaling 100, with r equaling .12 and E_1 equaling 12, the valuations are:

b	1-b	g	D_1	k=.14	k=.12	k=.10
0	1	.00	12	85.7	100.0	120.0
1/4	3/4	.03	9	81.8	100.0	128.6
1/2	1/2	.06	6	75.0	100.0	150.0
3/4	1/4	.09	3	60.0	100.0	300.0

When r equals k, P equals A validating the Miller and Modigliani proposition that dividends do not matter. A shortcut to a payout ratio is dividend yield times the P-E ratio or (D/P)(P/E) = D/E = (1-b). A valuation using the price-earnings ratio follows from $P_0 = E_1(1-b)/(k-br)$ where P-E = (1-b)/(k-br) and when multiplied by the expected earnings E_1 provides a stock valuation. In equilibrium when k equals r, the P-E ratio equals 1/k.

Conclusion

While obvious once the mathematics are examined, I repeatedly ask my students what is the holding period return to bonds and stocks and rarely get a correct response. Thus I'm repeatedly reminded that this exercise is well worth the review.

References

Bodie, Zvi, Alex Kane, & Alan J. Marcus *Essentials of Investments* [2010] 9th ed., McGraw-Hill Irwin, [2010] 10th ed.

Brealey, Richard A., Stewart C. Myers *Principles of Corporate Finance* [2008] 9th ed., Boston: McGraw-Hill/Irwin

Modigliani, Franco, Merton Miller "The Cost of Capital, Corporation Finance and the Theory of Investment" American Economic Review [1958[48 (3), pp. 261–297

Modigliani, Franco, Merton Miller. "Corporate income taxes and the cost of capital: a correction" *American Economic Review*. [1963] 53 (3), pp. 433–443.