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 Abstract:  

In this paper we introduce a latent variable based model for the dynamics of financial range, the 
stochastic conditional range (SCR). We propose to estimate its parameters by Kalman filter, indirect 
inference and simulated maximum likelihood depending on the hypotheses on the distributional form 
of the innovations. The model is applied to a large subset of the S&P 500 components. A comparison of 
its fitting and forecasting abilities with the conditional autoregressive range (CARR) model shows that 
the new approach can provide a competitive alternative. 
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1. Introduction 
It is a well-known phenomenon that financial time series exhibit volatility clustering. A very large literature 
on the dynamics of returns has developed since the seminal contributions of Engle (1982), Bollerslev 
(1986) and Taylor (2008) on GARCH and stochastic volatility. Most of this literature concentrates on the 
dynamics of the differences of closing prices of the reference period as a means of describing the subtle 
concept of volatility. Parkinson (1980) suggested that the use of extreme price values can provide a 
superior estimate of volatility than returns. The potential advantages of using price range as an alternative 
were also pointed out by Alizadeh et al. (2002), who claimed to “show theoretically, numerically, and 
empirically that range-based volatility proxies are not only highly efficient, but also approximately 
Gaussian and robust to microstructure noise”, while Brandt and Diebold (2006) noticed that range “is a 
highly efficient volatility proxy, distilling volatility information from the entire intraday price path, in 
contrast to volatility proxies based on the daily return, such as the daily squared return, which use only 
the opening and closing prices”.  
Chou (2005) proposed a dynamic model, the conditional autoregressive range (CARR) for the evolution of 
high/low range who mimics the structure of the ACD model of Engle and Russell (1998) for inter trade 
durations. This line of modelling has desirable statistical and empirical properties and the search for its 
refinements and extensions can draw from the wide body of ACD literature. In this article we introduce a 
latent variable based variant of the CARR model: the stochastic conditional range (SCR) model. In this new 
formulation, the dynamics of the ranges are driven by a latent variable which is supposed to capture the 
unobserved information flow that reaches the market. The specification of the model is multiplicative, like 
in the CARR model, but its main difference is that the SCR has two stochastic innovations, one affecting the 
observed range and the other the latent variable. The model can be seen as characterized by a mixture of 
distributions, or, in following Cox (1981), as parameter-driven. This specification also shares most of the 
statistical characteristics of the stochastic conditional duration (SCD) model of Bauwens and Veredas 
(2004). In section 2, we will present the model and discuss some of its properties.   
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In section 3 we propose three methods for estimation: maximum likelihood based on Kalman filter or on 
numerical integration of the latent variable and indirect inference. A comparison on the fitting and 
predictive capabilities of CARR and SCR models is carried out for a large sample of stocks in section 4. 
Results show that the SCR provides more reliable estimates of the autocorrelations of the data process, 
while in terms of forecasting accuracy it is comparable to CARR. Section 5 concludes.  
2 The model 
Let 𝑝𝜏 the price of a financial asset sampled at frequent (e.g.minutes or seconds) time intervals , and 𝑃𝜏 = 
(𝑝𝜏) its logarithm. We define as range the difference 𝑅𝑡 = (𝑃𝑡) − (𝑃𝑡), where indicates a coarser set of  
time intervals (e.g. days, weeks) such that ,  (1)  

Where   is the number of frequent intervals contained in one of the coarser intervals indexed by t.  
The conditional autoregressive range CARR(1,1), introduced by Chou (2005), is defined by the following 
equations:  
  𝑅𝑡 = Ψ𝑡𝜀𝑡  (2)  
  Ψ𝑡 = 𝜔 + 𝛼𝑅𝑡−1 + 𝛽Ψ𝑡−1  (3)  
 with   
  𝜔 > 0,    𝛼 ≥ 0,    𝛽 ≥ 0,  
  
where the baseline range (the error) εt has a distribution with density function p(ε|It), which has positive 
support and unit mean. It denotes the information set at time t-1, and it includes the past values of Rt and 
ψt. Computing moments and autocorrelation for the CARR(1,1) model is easy and one can obtain the 
following simple expression:   
  
  ,  (4)  

   (5)  

   (6)  

  𝜌𝑛 = (𝛼 + 𝛽)−1    (𝑛 > 1).  (7)  
  
We introduce the stochastic conditional range (SCR) as the process described as follows: 
  𝑅𝑡 = 𝑒𝜓𝑡 𝜀𝑡  (8)  
  𝜓𝑡 = 𝜔 + 𝛽𝜓𝑡−1 + 𝜎𝑢𝑡,  (9) 
where ut|It  has an iid standard normal distribution and εt|It has, like in the case of CARR, a distribution 
defined on the positive axis with unitary mean. The expected value of the range conditional to the past of 
the process up to time t-1 is   
  𝐸(𝑅𝑡|𝐼𝑡) = 𝑒𝜓𝑡  
and the distribution of Rt results from the mixing of the lognormal distribution of eψt and the distribution 
of εt. The condition |β|<1 is necessary and sufficient to ensure stationarity and ergodicity for the process 
ψt, and hence for Rt.  
The theoretical first two moments and thes- are the following   

   (10)  
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  ,  (11)  

   (12)  

 for all 𝑠 ≥ 1.  
Concerning the distribution of εt, any law with positive support can be a suitable candidate.In this paper 
we will use two distributions: the Weibull and the log-normal. Weibull distribution is commonly employed 
in duration analysis and was adopted by Chou (2005) in the CARR model. The justification for the use of 
the log-normal distribution arises from the result by Alizadeh et al.(2002) on the distribution of daily high 
and low prices,which appears to be approximately Gaussian. Depending on the choice of the distribution 
for εt, the estimated models will be denoted as W-SCR and L-SCR.  
As it was noted above, we restrict the first moment of the baseline range εt to be equal to one. This is 
necessary to avoid an identification problem between the expectations of εt and ψt. The location parameter 
of the lognormal distribution will be therefore set to -1/2σε2, while the scale parameter of the Weibull will 
be restricted to be equal to Γ(1+1/γ)-1, where σε2 and γ are the shape parameters which will be let free to 
vary.  
3 Estimation   
In this section we will discuss how the estimation of the SCR model can be performed either by maximum 
likelihood (ML) or by indirect inference. Concerning ML estimation, we will detail the methods that can be 
followed in order to deal with the problem of the presence of a latent variable.   
3.1 ML with Kalman filter and EIS  
The distribution of the baseline range 𝜀𝑡 plays an important role in deciding how to proceed in the 
computation of the likelihood function to be maximized. If 𝜀𝑡 is log-normally distributed, as in the L-SCR 
specification, the model can be trasformed by taking the logarithms on both sides of equation (8). This 
yields the following relationships   
  𝑟𝑡 = ln𝑅𝑡 = 𝜓𝑡 + ln𝜀𝑡,  (13)   
  𝜓𝑡 = 𝜔 + 𝛽𝜓𝑡−1 + 𝜎𝑢𝑡,  (14)  
that can be interpreted as the state and transition equations of a linear state-space model. This model can 
be easily estimated by Kalman filter and the resulting likelihood can be maximized by means of a numerical 
algorithm.  
The reliance of the Kalman filter on the normality of both error components (ln εtand ut) limits its use to 
the L-SCR case only. When the distribution of εt is exponential or Weibull, the Kalman filter will not produce 
an efficient computation of the likelihood anymore. Therefore, it is necessary to resort to the numerical 
integration of the density of the latent variable to compute an exact likelihood.  
To do this, we start by denoting by R a sequence of n realizations of the range process. R has a conditional 
density of g(R|ψ,θ1), where θ1 is a parameter vector indexing the distribution and ψ a vector of latent 
variables of the same dimension of the sample R. The joint density of ψ is h(ψ|θ2),with θ2 a vector of 
parameters,and the likelihood function for R can be written as  

            (15)  the last term of the 

equation is the result of the sequential decomposition of the integrand in the product of the density of εt 
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conditional on ψt, p(Rt|ψt,θ1), that in our case will be Weibull, and the density of ψt conditional on its past, 
q(ψt| ψt-1,θ2), which is normal with mean ω+βψ(t-1) and variance σ2.  
This high dimensional integral is not analytically solvable and a numerical approach is necessary. There is 
a very substantial literature on Monte Carlo integration methods, for an interesting survey in the field of 
stochastic volatility see Broto and Ruiz (2004).  
The method we will employ is a refinement of the widespread importance sampling technique, it is called 
efficient importance sampling (EIS) and was developed by Richard and Zhang (2007). As the authors point 
out, this method is particularly convenient for an accurate numerical solution of high dimensional 
"relatively simple" integrals like the ones we need to treat and has already been successfully applied to 
problems that are similar (see Liesenfeld and Richard (2003) and Bauwens and Hautsch (2006)) or nearly 
identical (see Bauwens and Galli (2009)) to ours. For a detailed presentation of the algorithm, we refer the 
reader to Richard and Zhang (2007). A description of its implementation in the contest of the SCD model, 
which share the same functional form with the model proposed in this paper is available in Bauwens and 
Galli (2009). In the appendix we present a brief summary.  
3.2 Indirect inference   
An alternative solution for the estimation of the parameters of the SCR models can consist in indirect 
inference (for a detailed introduction see Gourieroux and Monfort (1996)), a simulation-based method 
that can be useful in estimating models for which the likelihood function is difficult to evaluate. Indirect 
inference relies on the possibility of easily simulating data from the model which is object of estimation 
(the estimand model). Simulations from the estimand are evaluated through a criterion function 
constructed with an approximate, or auxiliary, model, whose estimation can be performed easily (at least 
relatively to the estimand model). The auxiliary model does not necessarily provide an accurate 
description of the true process that generated the data, working more as a window through which to view 
both the actual data and the ones simulated from the estimand model. The objective of indirect inference 
is to choose the parameters of the estimand model so that they minimize a distance between the results of 
the estimation (that can consist in the parameters, the likelihood or the score) of the auxiliary model with 
the simulated data and the actual ones. A brief summary of this method is presented in the appendix.  
For the indirect inference estimation of the SCR model, we chose two auxiliary models: an AR(10) and an 
ARMA(1,1). Both models were estimated on the logarithm of the observed and simulated ranges. As a result 
of the estimation of the two auxiliary models we chose to use their parameters and a simple sum of their 
squared differences was employed as the distance to minimize to obtain the indirect inference estimator.  
3.3 Estimation of the latent variables   
Once estimates the parameters of the models have been obtained, it is possible to compute estimates of 
the latent variableψt. The process described by equations 13 and 14 is in the form of a linear state space 
model, and this allows to employ Bayesian updating in order to recover estimates for a prediction step,that 
provides a one-step-ahead prediction of the latent variable ψt given the previous observation r(t-1)   
  (𝜓𝑡|𝑟1:𝑡−1) = (𝜓𝑡|𝜓𝑡−1)𝑝𝜃(𝜓𝑡−1|𝑟1:𝑡−1)𝑑𝜓𝑡−1,  (16)  
and for a filtering (updating) step, which provides an estimate of the value of the latent variable ψt given 
an contemporary observation rt,  
  .  (17)  

When the state space model is Gaussian in both its innovations, the Kalman filter provides simple analytic 
forms for the predicted and updated values of the latent variable. This is the case only for the L-SCR model. 
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If instead we allow the baseline distribution of the range to follow a different model (like, in our case, a 
Weibull) the Gaussianity of the process is lost and we had to recur to particle filter, a Monte Carlo method 
for the numerical evaluation of non Gaussian state space models (for details see Arulampam et al. (2002).  
3.4 Evidence from simulated processes   
Table 1 displays the sample means and standard deviations of the estimated parameters of 100 simulations 
of W-SCR series. The simulated sets have sizes of 1000, 2500 and 10000 observations and the parameters 
used to generate the data are similar to the average values of the estimates computed later in this paper. 
The simulated series were estimated by indirect inference with an AR(10) and a ARMA(1,1) auxiliary 
model and by maximum EIScomputed likelihood. We also report the results of Kalman filter estimation, 
but only for the three parameters governing the dynamics of the latent variable, the only ones that would 
be estimated consistently by quasi maximum likelihood.   

1000           
           
 DGP     0.0000  0.9750  0.1000  3.5000  
            
Indirectinf. 
AR(10)   

Mean   0.0005    0.9767    0.0931    3.4943   

  Stddev  0.0029  0.0076  0.0117  0.1246  
Indirectinf.  
ARMA(1,1)   

Mean   0.0003    0.9754    0.0918    3.6755   

  Stddev  0.0029  0.0074  0.0128  0.2906  
 ML-EIS   Mean   0.0017    0.9763    0.0955    3.4135   
  Stddev  0.0035  0.0089  0.0094  0.1316  
Kalmanfilter  Mean   0.0031    0.9693    0.1945     
  Stddev  0.0039  0.0095  0.0122    
            
2500           
           
 DGP     0.0000  0.9750  0.1000  3.5000  
            
Indirectinf. 
AR(10)   

Mean   0.0002    0.9753    0.1001    3.5508  

  Stddev  0.0017  0.0056  0.0076  0.0803  
Indirectinf.  
ARMA(1,1)   

Mean   0.0001    0.9746    0.0966    3.7535   

  Stddev  0.0017  0.0053  0.0078  0.2125  
 ML-EIS   Mean   0.0012    0.9789    0.0915    3.3570   
  Stddev  0.0023  0.0066  0.0076  0.1174  
Kalmanfilter  Mean   0.0033    0.9724    0.1949     
  Stddev  0.0021  0.0059  0.0067    
            
10000           
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 DGP     0.0000  0.9750  0.1000  3.5000  
            
Indirectinf. 
AR(10)   

Mean   0.0003    0.9756    0.0992    3.5214   

  Stddev  0.0010  0.0033  0.0039  0.0401  
Indirectinf.  
ARMA(1,1)   

Mean   0.0001    0.9758    0.0936    3.7319   

  Stddev  0.0009  0.0033  0.0052  0.1603  
 ML-EIS   Mean   -0.0006    0.9761    0.0962    3.4276   
  Stddev  0.0012  0.0034  0.0057  0.1038  
Kalmanfilter  Mean   0.0028    0.9742    0.1957     
  Stddev  0.0011  0.0031  0.0035    
            

  
Table 1: Sampling means and standard deviations of 100 estimates of the W-SCR model parameters for 
simulated series of 1000, 2500 and 10000 observations. The initial parameters of the four estimation 
methods were chosen to be equal to the simulation parameters plus a zero mean Gaussian error with 
standard deviation set at 0.05 for ω and β, at 0.01 for σ and at 0.5 for γ.   
If any jittered starting value was beyond parameter constraints, a new sample of values was drawn. The 
parameters ω and β are estimated in a satisfactory way by all models even at the limited sample size of 
1000 observations. Sample means and standard deviations are strictly comparable. Estimators seem to 
converge, in fact as the sample size increases; averages approach the simulated parameters and standard 
deviation become tighter. σ, the standard deviation of the innovations of the latent variable, seems more 
problematic to estimate. Indirect inference and ML-EIS seem to underestimate in a similar way, while the 
Kalman filter grossly overshoots (this last result is consistent with the Monte Carlo results in Bauwens and 
Galli (2009) for SCD models). Finally concerning γ the shape parameter of the Weibull baseline, it seems 
that indirect inference with an ARMA(1,1) auxiliary model has a slight loss of efficiency compared with 
ML-EIS and AR(10)-based indirect inference.   
4 Empirical analysis  
4.1 The data  
We carried out the empirical analysis by considering series of ten years for all Standard and Poor’s 500 
components ending at the date of February 15, 2014. Data on daily price maxima and minima were 
downloaded from Yahoo! finance via the tseries package in R. The resulting series of ranges were 
normalized to have a unit mean in order to speed up computation by reducing the search for the intercept 
in the conditional range function and to have more comparable estimates and forecasts. Out of the original 
500 series, 22 of them were composed by less than 1000 observations and were discarded. This choice 
was somewhat arbitrary, but convergence issues for the numerical algorithms for very limited sample sizes 
required to set a threshold. Table 2 provides some descriptive statistics of the range series for the 
remaining 478 stocks. Not all series have a full 10 years length of 2517 observations, but the average 
sample size after pruning our database of particularly short sets is quite close to the maximum value. It can 
be noted too that data have a rather low degree of overdispersion (computed as the ratio of sample mean 
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and sample standard deviation), yet maxima tend to be several standard deviations away from the mean. 
Even visual inspection of some charts revealed that this could be due to an issue of outliers rather than to 
a particularly fat tail in the baseline distribution. Whether these outliers derive from quirks in recording 
or from exceptional conditions in the markets is difficult to tell. The use of an outlier detection and removal 
algorithm, like for instance the one deviced for durations by Chiang and Wang (2012), could be an 
interesting extension to this analysis and we leave it for further research. Average skewness and kurtosis 
indicate a strong departure from normality due to the presence of a heavy right tail. Statistics on 
autocorrelations are reported in the first column of the upper part of table 5 and show the presence of a 
marked degree of memory. These descriptive statistics are similar to the results obtained by Chou (2005). 

  mean   stddeviation    maximum    minimum   
  
observations   

  
 2469.176    

    
 201.072     

  
2517      1039    

means    1     0      1      1    
medians    0.808     0.056      0.888      0.571    
stddeviations    0.720     0.158      1.489      0.499    
minima    0.177     0.046      0.275    0.001    
maxima    9.586     5.294      45.431      4.303    
skewnesses    3.745     2.414      25.621      1.758    
kurtoses    34.378     91.415     981.904     5.442    
          

Table 2: Descriptive statistics of the 478 stocks used for the empirical analysis.  
4.2 Estimation results  
 The models used in the empirical analysis were a CARR(1,1) with a Weibull conditional range distribution  
(W-CARR), an SCR with a lognormal distribution (L-SCR) and an SCR with a Weibull conditional 
distribution (WSCR).  All models were specified with only one lag of the conditional range (and the range 
for the CARR model). The first model was estimated by conditional maximum likelihood. In the second and 
the third model, likelihood was computed by respectively Kalman filter and EIS. The W-SCR model were 
also estimated by indirect inference with an AR(10) and an ARMA(1,1) as auxiliary models. Estimation 
times runned from less than a second for the CARR model to an average of half a minute for the L-SCR 
model and the W-SCR with an AR(10) auxiliary model and an average of 3-4 minutes for the W-SCR with 
ML-EIS and ARMA(1,1) indirect inference.   
Table 3 reports sample means and standard deviations of the estimated parameters. All the estimators of 
the SCR model yield similar values for ω and for β. The high level of persistence in the data is reflected by 
the average estimate of β, at a value close to one.  
In the CARR case a similar high persistence emerges from the sum of the estimated values of α and β, which 
is close to one as well.Estimates for σ and γ seem to be sensitive to the method employed and seem to be 
negatively correlated. Even if the CARR model yields markedly lower estimates for γ than the SCR model, 
the parameter is always larger than 2 on average. This result is similar to the value obtained in Chou (2005) 
for the S&P500 index and suggest that an exponential distribution (that could be obtained by setting to one 
the γ parameter of the Weibull) would not be a suitable model for the baseline range. 

              𝜎𝜀  
                
W-CARR   mean   0.0405    0.2069    0.7509      2.2673     
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  stddev  0.0334  0.0642  0.0865    0.2378    
               
L-SCR   mean   -0.0002      0.9782    0.1695       

0.3546  
  stddev  0.0014    0.0184  0.0252    0.0238  
               
W-SCR   mean   -0.0029      0.9784    0.0725    3.9483     
ind. inf. 
ARMA(1,1)   

stddev  0.0028    0.0185  0.0282  0.3637    

               
W-SCR   mean   -0.0026      0.9619    0.1033    3.7991     
ind. inf. AR(10)   stddev  0.0018    0.0290  0.0308  0.3564    
               
W-SCR   mean   0.0085      0.9311    0.1495    3.2266     
ML-EIS   stddev  0.0111    0.0472  0.0386  0.2266    
                

Table 3: Sample means and standard deviations of estimated parameters.  
4.3 Analysis of residuals  
For the SCR model, we can define the residual corresponding to the innovation 𝜀𝑡 as   

            (18)  

where 𝜓 𝑡 are the estimates of the latent variable provided either by the Kalman or the particle filter 
conditional on the observation of the range at time t (the so called filtered or updated estimates). In the 
CARR case, the residual is provided by the the ratio 𝑅𝑡/Ψ 𝑡where Ψ 𝑡 is recursively computed by replacing 
the values of the estimated parameters and of 𝑅𝑡−1 and Ψ𝑡−1 in equation 3. For each stock in the sample we 
computed the sample correlogram of   and checked if the strong autocorrelation present in the data was 
removed by the estimated dynamic part of the models we used. Results are detailed in table 4. Though 
none of the models seems to completely explain away the autocorrelation present in the data, residuals 
display a much limited serial dependence with respect to the samples used for estimation. The first 
autocorrelation is on average positive and quite high, followed by smaller negative values for the SCR 
models, while in the CARR case it drops close to zero after the first lag. At higher lags (after 10) SCR 
residuals’ autocorrelations tend to drop to small values while CARR’s ones show a tendency to increase. 
4.4 Fit of moments and autocorrelations  
A comparison of the ability to fit the moments and autocorrelation structure of CARR and SCR models is 
presented in table 5. Moments and autocorrelations of the data were compared with implicit moments and 
autocorrelations computed by evaluating for each series formulae 4 to 7 and 10 to 12 with the values of 
estimated parameters. Except for the W-SCR estimated with AR(10) indirect inference, all models seem to 
slightly underestimate the average of the data.  
  CARR    L-SCR    W-SCR    W-

SCR   
  W-

SCR  
 

           ind.inf.   
ind.inf.   

  ML-
EIS  
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           ARMA(1,1)   
AR(10)   

     

  mean  Stdev  mean  stdev  mean  stdev  mean  stdev  mean  stdev  
                      
ACF(1)’s    0.067   0.040   0.077   0.026   0.096   0.044   0.054   0.036   0.020   0.041  
ACF(2)’s    0.003   0.034   0.000   0.026   0.017   0.028   -0.015   0.021   -

0.031   
0.028  

ACF(3)’s    -
0.011   

0.036   -
0.022   

0.026   -
0.009   

0.027   -0.030   0.022   -
0.033   

0.025  

ACF(4)’s    -
0.010   

0.035   -
0.026   

0.024   -
0.016   

0.025   -0.028   0.021   -
0.022   

0.025  

ACF(5)’s    0.001   0.036   -
0.018   

0.026   -
0.012   

0.024   -0.017   0.021   -
0.004   

0.024  

ACF(6)’s    0.001   0.035   -
0.019   

0.023   -
0.014   

0.025   -0.014   0.022   0.000   0.025  

ACF(7)’s    0.001   0.033   -
0.019   

0.023   -
0.015   

0.026   -0.012   0.023   0.001   0.025  

ACF(8)’s    0.003   0.033   -
0.017   

0.023   -
0.014   

0.025   -0.009   0.023   0.005   0.024  

ACF(9)’s    0.013   0.033   -
0.009   

0.022   -
0.008   

0.022   -0.001   0.021   0.014   0.023  

ACF(10)’s    0.027   0.031   0.004   0.022   0.006   0.021   0.014   0.021   0.022   0.023  
ACF(20)’s    0.026   0.030   0.003   0.021   0.007   0.022   0.014   0.022   0.020   0.020  
ACF(30)’s    0.023   0.028   0.002   0.020   0.004   0.021   0.009   0.021   0.013   0.020  
ACF(40)’s    0.022   0.027   0.003   0.020   0.005   0.021   0.008   0.022   0.010   0.020  
ACF(50)’s    0.015   0.027   -

0.003   
0.020   -

0.002   
0.019   0.004   0.020   0.006   0.019  

 Table 4:  Sample means and standard deviations of the autocorrelations of the residuals 𝜀   
The mean square errors of the first moments, computed by taking the average of the squares of differences 
between the empirical first moment and the implicit one computed on estimated parameters, show that 
the AR(10) W-SCR and the L-SCR seem to evaluate most precisely the mean of the process. Concerning the 
second moment, once again all models seem to yield estimates that are smaller on average than the sample 
values computed from the data. Here CARR and again AR(10) W-SCR seem to be the specifications with a 
lower quadratic loss. Coming to autocorrelations, W-SCD seems to reconstruct the serial dependency of 
the data with a smaller square loss than LSCD, which tends to overestimate the lower order 
autocorrelations and underestimate the higher order ones. CARR too has a higher value of MSE at all lags, 
as it systematically tends to underestimate the serial dependence in the data. It must be noted though that 
no model seems able to accont fully for the apparent long memory in the data and at high order of lags all 
autocorrelations seem to be underestimated.  
4.5 Predictive accuracy  
The predictive accuracy of the different models was compared by an insample one-step-ahead analysis. 
First the full sample was used to estimate the parameters of the models. Then we predicted every 
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observation at timet=2,...,n using estimated parameters and observations at time t-1=1,...,n-1.An outsample 
analysis was not performed because splitting the sample in two parts in an already quite short set of data 
woud either lead to more jittery parameter estimates or to too few forecasts. The forecasting accuracy of 
each estimator for each series was measured by the mean square (prediction) error that is the average of 
the squared difference between predicted and observed values. The significance of the difference between 
forecast errors of couples of estimators was verified by the Diebold and Mariano (2002) test with a 
bilateral alternative and a quadratic loss function. Predictions are considered different if the Bonferroni 
corrected -value is below 5%. Table 6 displays the main results for the estimation of the three models. It 
appears that though MSE’s are very similar, CARR tends to predict marginally better than SCR regardless 
of the method of estimation. The substantial homogeneity in the performance of L-SCR and W-SCR models 
does not come as a surprise, as the most relevant parameters for forecasting are estimated consistently by 
Kalman filter. Concerning the slight forecasting edge of the CARR model, this could be due to the presence 
of two lagged variables in the CARR expression for conditional range. The SCR could be augmented by 
including the past observed range as a further determinant of the dynamics of its latent component and it 
would be interesting to evaluate if its forecasting ability improves. 
  data     CARR    L-SCR    W-SCR    W-SCR    W-SCR  
               ind.inf.   ind.inf.    ML-EIS  
               ARMA(1,1)   AR(10)       
  mean  stdev  mean  stdev  mean  stdev  mean  stdev  mean  stdev  mean  stdev  
                          
 1𝑠𝑡mom   

1.000   
0.000   

0.954   
0..060   

0.933   
0.111   

0.953   
0.111   

1.005   
0.066   

0.944   
0.121  

 2𝑛𝑑mom   
1.543   

0.278   
1.313   

0.360   
1.024   

0.086   
1.090   

0.204   
1.296   

0.103   
1.127   

0.191   

ACF(1)’s    
0.601   

0.102   
0.502   

0.156   
0.697   

0.091   
0.595   

0.087   
0.621   

0.064   
0.531   

0.059  

ACF(2)’s    
0.550   

0.110   
0.483   

0.159   
0.682   

0.092   
0.581   

0.087   
0.596   

0.067   
0.473   

0.065  

ACF(3)’s    
0.525   

0.111   
0.465   

0.163   
0.668   

0.095   
0.569   

0.089   
0.573   

0.074   
0.462   

0.072  

ACF(4)’s    
0.513   

0.110   
0.447   

0.167   
0.654   

0.099   
0.556   

0.092   
0.551   

0.080   
0.472   

0.087  

ACF(5)’s    
0.503   

0.111   
0.431   

0.171   
0.640   

0.102   
0.544   

0.093   
0.530   

0.086   
0.484   

0.098  

ACF(6)’s    
0.494   

0.111   
0.416   

0.175   
0.627   

0.104   
0.533   

0.095   
0.511   

0.090   
0.493   

0.107  

ACF(7)’s    
0.482   

0.113   
0.402   

0.179   
0.615   

0.107   
0.522   

0.097   
0.492   

0.094   
0.496   

0.114  

ACF(8)’s    
0.475   

0.112   
0.389   

0.182   
0.602   

0.109   
0.511   

0.098   
0.474   

0.098   
0.506   

0.120  

ACF(9)’s    
0.476   

0.113   
0.376   

0.185   
0.590   

0.111   
0.500   

0.099   
0.457   

0.101   
0.530   

0.124  

ACF(10)’s    
0.468   

0.110   
0.364   

0.188   
0.578   

0.113   
0.490   

0.101   
0.441   

0.104   
0.536   

0.127  
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ACF(20)’s    
0.414   

0.107   
0.271   

0.207   
0.476   

0.128   
0.400   

0.108   
0.314   

0.116   
0.491   

0.128  

ACF(30)’s    
0.380   

0.105   
0.212   

0.215   
0.394   

0.134   
0.330   

0.110   
0.229   

0.111   
0.416   

0.122  

ACF(40)’s    
0.345   

0.108   
0.172   

0.218   
0.329   

0.134   
0.273   

0.108   
0.171   

0.101   
0.357   

0.129  

ACF(50)’s    
0.307   

0.104   
0.143   

0.218   
0.276   

0.131   
0.228   

0.103   
0.130   

0.090   
0.243   

0.117  

                          
      MSE    MSE    MSE    MSE    MSE  
1
 𝑠𝑡mo
m  

    0.006    0.002    0.007    0.000    0.009  

2𝑛𝑑mom      0.159    0.395    0.315    0.116    0.301  
ACF(1)’s       0.031    0.013    0.005    0.005    0.010  
ACF(2)’s       0.026    0.021    0.006    0.007    0.010  
ACF(3)’s       0.025    0.024    0.007    0.007    0.007  
ACF(4)’s       0.026    0.023    0.007    0.006    0.004  
ACF(5)’s       0.028    0.023    0.007    0.005    0.003  
ACF(6)’s       0.029    0.021    0.006    0.005    0.003  
ACF(7)’s       0.029    0.021    0.006    0.005    0.003  
ACF(8)’s       0.032    0.020    0.006    0.005    0.004  
ACF(9)’s       0.036    0.017    0.005    0.006    0.006  
ACF(10)’s       0.037    0.016    0.005    0.006    0.008  
ACF(20)’s       0.052    0.008    0.004    0.017    0.013  
ACF(30)’s       0.065    0.005    0.007    0.030    0.017  
ACF(40)’s       0.068    0.004    0.009    0.038    0.019  
ACF(50)’s       0.068    0.005    0.010    0.038    0.021  
               

Table 5: Upper table: sample means and standard deviations of sample moments and autocorrelations of 
the 478 S&P 500 stocks with more than 1000 observations and theoretical moments and autocorrelations 
computed from estimated parameters. Lower table: averages of the squared differences between implicit 
theoretical moments and sample moments computed for each stock.   
  
When the significance of pairs of forecasts is tested, it turns out that only about in one stock in fifteen the  
CARR and the W-SCR model forecast in a significantly different way. The proportion reduces of a half when 
the LSCR is concerned. If finally we restrict our sample to significantly different forecasts only, we see that 
the gain of  
CARR in terms of MSE is slightly reduced in the case of the W-SCR while it remains substantially the same 
for the LSCR. We conclude by remarking that statistics on the comparisons between W-SCR and L-SCR, that 
are not reported in table 6, display a substantial similarity between the forecasts of the two models (for 
example, only less than the 1% of the forecasts can be considered different after testing).  
  

  mean  sd  min  max    
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MSE W-CARR    
0.2738   

 
0.1288   

 
0.1564   

 
1.3703   

 

MSE L-SCR    
0.2759   

 
0.1136   

 
0.1632   

 
1.0583   

MSE W-SCR ind.inf. AR(10)   0.2758    
0.1155   

 
0.1597   

 
1.0745   

MSE W-SCR ind.inf. 
ARMA(1,1)   

 
0.2763   

 
0.1189   

 
0.1601   

 
1.1181   

MSE W-SCR ML-EIS   0.2756    
0.1171   

 
0.1613   

 
1.0690   

significantly             
L-SCR and W-CARR           3.8%   
significantly             
W-SCR AR(10) and W-CARR           7.9%   
significantly             
W-SCR ARMA(1,1) and W-
CARR   

        7.9%   

significantly             
W-SCR ML-EIS and W-CARR           7.8%   

Table 6: MSE comparison and Diebold and Mariano (2002) results for insample one-step-ahead forecasts. 
5 Conclusion  
The SCR is a simple model for the dynamics of financial range. Its estimation is feasible and can be achieved 
with several techniques, a few of them have been proposed here. In an empirical analysis on a large subset 
of the stocks composing S&P 500, SCR seemed to improve on the CARR model in reconstructing the 
autocorrelation structure of the data and was only slightly less efficient in forecasting. Extensions of the 
models are possible and could be explored in future research. Concerning the latent variable, a long 
memory version, a version with a more complex process than an AR(1) and a departure from normality of 
the innovation in the latent variable process could be of interest. Concerning the baseline range 
distribution, a mixture distribution could be useful in accounting for the consequencies of heterogeneity 
in the information in the market.  
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